CDBS Print Page 1 of 16

Federal Communications Commission Washington, D.C. 20554	Approved by OMB 3060-0029 (July 2011)	FOR FCC USE ONLY
FCC 3	340	
APPLICATION FOR CON FOR RESERVE NONCOMMERCIAL EDUC STATI	D CHANNEL ATIONAL BROADCAST	FOR COMMISSION USE ONLY FILE NO 20120321AAF
Read INSTRUCTIONS Be	efore Filling Out Form	

Section I - General Information

sec	tion 1 - General Information			
1.	Legal Name of the Licensee/Permittee SHENANDOAH VALLEY EDUCATIONAL TELEVISION CORPORATION			
	Mailing Address 298 PORT REPUBLIC ROAD			
	City HARRISONBURG	State or Countr VA	y (if foreign address)	Zip Code 22801 - 3052
	Telephone Number (include area code) 5404345391	E-Mail Address TMANCARI@		
	FCC Registration Number: 0002064392	Call Sign WVPY		Facility Identifier 66378
2.	Contact Representative (if other than licen WILLIAM H. FITZ	see/Permittee)		Firm or Company Name COVINGTON & BURLING LLP
	Mailing Address 1201 PENNSYLVANIA AVE., N.W.			
	City WASHINGTON	State or Countr DC	y (if foreign address)	ZIP Code 20004 - 2401
	Telephone Number (include area code) 2026625120			E-Mail Address (if available) WFITZ@COV.COM
3.	Is this application being filed in response t If Yes, specify closing date and/or window	o a window? v number:		C Yes C No
4	Application Purpose			
	New station		Major Modification of cons	
	Major Change in licensed facility		Minor Modification of cons	truction permit
	Minor Change in licensed facility		C Major Amendment to pendi	ng application
			C Minor Amendment to pende	ng application
	(a) File number of original construction p	ermit:	-	
	(b) Service Type:		C FM C TV C DTV © DT	rs
	(c) DTV Type:		C Pre-Transition C Post-Trans	nsition O Both
	(d) Community of License:			
	•			
	City: FRONT ROYAL (e) Facility Type		State: VA	

CDBS Print Page 2 of 16

If an amendment, **submit as an Exhibit** a listing by Section and Question Number the portions of the pending application that are being revised.

[Exhibit 1]

NOTE: The failure to include an explanatory providing full particulars in connection with a "No" response may result in dismissal of the application. See Instructions, paragraph L for additional information regarding completion of explanatory exhibits.

SECTION II - Legal and Financial

1.	Certification. Applicant certifies that it has answered each question in this application based on its review of the application instructions and worksheets. Applicant further certifies that where it has made an affirmative certification below, this certification constitutes its representation that the application satisfies each of the pertinent standards and criteria set forth in the application instructions and worksheets.	6 Yes C No
2.	Eligibility. Each application must answer "Yes" to one and "No" to two of the three following certifications. An applicant should not submit an explanatory exhibit in connection with these Question 2 "No" responses.	
	The applicant certifies that it is:	
	a. a nonprofit educational institution; or	C Yes C No
	b. a governmental entity other than a school; or	C Yes C No
	c. a nonprofit educational organization, other than described in a. or b.	C Yes C No
3.	For applicants checking "Yes" to question 2(c) and applying for a new noncommercial educational television station only, the applicant certifies that the applicant's officers, directors and members of its governing board are broadly representative of the educational, cultural, and civic segments of the principal community to be served.	C Yes C No C N/A
4.	a. The applicant certifies that the Commission has previously granted a broadcast application identified here by file number that found this applicant qualified as a noncommercial educational entity with a qualifying educational program, and that the applicant will use the proposed station to advance a program similar to that the Commission has found qualifying in applicant's previous application.	Yes No FCC FileNumber [Exhibit 2]
	b.Applicants who answered "No" to Question 4(a), must include an exhibit that describes the applicant's educational objective and how the proposed station will be used to advance an educational program that will further that objective according to 47 C.F.R. Section 73.503 (for radio applicants) and 47 C.F.R. Section 73.621 (for television applicants).	
5.	The applicant certifies that its governing documents (e.g., articles of incorporation, by-laws, charter, enabling statute, and/or other pertinent organizational document) permit the applicant to advance an educational program and that there is no provision in any of those documents that would restrict the applicant from advancing an educational program or complying with any Commission rule, policy, or provision of the Communications Act of 1934, as amended.	C Yes C No
6.	a. Parties to the Application. List separately each party to the application including, as applicable, the applicant, its officers, directors, five percent or greater stockholders, non-insulated partners, members, and all other persons and entities with attributable interests. If another entity hold an attributable interest in the applicant, list separately, as applicable, its officers, directors, five percent or greater stockholders, non-insulated partners, and board members. Create a separate row for each individual or entity. Attach additional pages if necessary. [Enter Parties/Owners Information]	
	[Enter Factor of whole information]	

CDBS Print Page 3 of 16

	b. Applicant certifies that equity and financial interests not set forth above are non-attributable pursuant to 47 C.F.R. Section 73.3555 and that there are no agreements or understandings with any non-party that would give influence over the applicant's programming, personnel, or finances to that non-party.	C Yes C No [Exhibit 3]
7.	Other Authorizations. List call signs, locations, and facility identifiers of all other broadcast stations in which applicant or any party to the application has an attributable interest pursuant to the notes to 47 C.F.R. Section 73.3555.	□ _{N/A} [Exhibit 4]
8.	Character Issues. Applicant certifies that neither applicant nor any party to the application has or has had any interest in or connection with: a. any broadcast application in any proceeding where character issues were left unresolved or were resolved adversely against the applicant or party to the application; or	C Yes C No See Explanation in [Exhibit 5]
	b. any pending broadcast application in which character issues have been raised.	
9.	Adverse Findings. Applicant certifies that, with respect to the applicant, any party to the application, and any non-party equity owner in the applicant, no adverse finding has been made, nor has an adverse final action been taken by any court or administrative body in a civil or criminal proceeding brought under the provisions of any law related to any of the following: any felony; mass media-related antitrust or unfair competition; fraudulent statements to another government unit; or discrimination.	C Yes C No See Explanation in [Exhibit 6]
	If the answer is "No," attach as an Exhibit a full disclosure concerning the persons and matters involved, including an identification of the the court or administrative body and the proceeding (by dates and file numbers), and a description of the disposition of the matter. Where the requisite information has been earlier disclosed in connection with another application or as required by 47 C.F.R. Section 1.65, the applicant need only provide: (i) an identification of that previous submission by reference to the file number in the case of an application, the call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter.	
10.	Alien Ownership and Control. Applicant certifies that it complies with the provisions of Section 310 of the Communications Act of 1934, as amended, relating to interests of aliens and foreign governments.	• Yes • No
	and foreign governments.	See Explanation in [Exhibit 7]
11.	Program Service Certification. Applicant certifies that it is cognizant of and will comply with its obligations as a commission licensee to present a program service responsive to the issues of public concern facing the station's community of license and service area.	C Yes C No
12.	Local Public Notice. Applicant certifies compliance with the public notice requirements of 47 C.F.R. Section 73.3580.	C Yes C No
13.	Anti-Drug Abuse Act Certification. Applicant certifies that neither applicant nor any party to the application is subject to denial of federal benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862.	• Yes • No
14.	Equal Employment Opportunity (EEO). If the applicant proposes to employ five or more full-time employees, applicant certifies that it is filing simultaneously with this application a Model EEO Program Report on FCC Form 396-A.	C Yes C No C N/A
	UESTIONS 15, 16 AND 17 APPLY ONLY TO APPLICANTS FOR NEW STATIONS. OT IN PROCEED TO QUESTION 18.	HER APPLICANTS
15.	Financial. The applicant certifies that sufficient net liquid assets are on hand or that sufficient funds are available from committed sources to construct and operate the requested facilities for three months without revenue.	O Yes O No
	If "No" to 15., answer question 16. and 17.	See Explanation in [Exhibit 8]

CDBS Print Page 4 of 16

16.	Is this application contingent upon receipt of a grant from the National Telecommunications and Information Administration?	C Yes C No	
17.	Is this application contingent upon receipt of a grant from a charitable organization, the approval of the budget of a school or university, or an appropriation from a state, county, municipality or other political subdivision?	C Yes C No	
or a acti app by l	TE: If Yes to 16. or 17., the application cannot be granted unconditionally until all of the necessary appropriated. In the case of grants from the National Telecommunications and Information Administion on the applicant's part is required. If the applicant relies on funds from a source specified in Queblicant must advise the Commission when the funds are committed or appropriated. This shouletter amendment to the application. Applicants should take note that the Commission's constructions is idered "tolled" by funding difficulties and that any permit granted conditionally on funding will exconstructed for any reason, including lack of funding.	stration, no further estion 17., the ald be accomplished in period is not	
ŇE	ESTIONS 18 AND 19 DO NOT APPLY TO APPLICATIONS FOR NEW STATIONS. APPLICANTS FOR NEW TV STATE OCEED TO SECTION III. APPLICANTS FOR NEW TV STATE OCEED TO SECTION IV.		
Ho	lding Period.		
18.	Applicant certifies that this application does not propose a modification to an authorization that was awarded on the basis of a preference for fair distribution of service pursuant to 47 U.S.C. Section 307(b). If "No," answer a. and b. below. If applicant answers "No" to 18. above and cannot answer	• Yes C No	
	"Yes" to either a. or b. below, the application is unacceptable.		
	a. Applicant certifies that the proposed modification will not downgrade service to the area on which the Section 307(b) preference was based.	O Yes O No	
	b. Applicant certifies that although it proposes to downgrade service to the area on which the Section 307(b) preference was based, applicant has provided full service to that area for a period of four years of on-air operations.	C Yes C No	
19.	Applicant certifies that this application does not propose a modification to an authorized station that received a credit for superior technical parameters under the point system selection method in 47 C.F.R. Section 73.7003. If "No," applicant must be able to answer "Yes" to a. below or provide an exhibit that makes	• Yes • No	
	a compelling showing that the downgrade would be in the public interest. a. Applicant certifies that the population and area within the proposed service contour (60 dBu (FM) or grade B (TV)) are greater than or equivalent to those authorized.	C Yes O No [Exhibit 9]	

Section III Fair Distribution of Service Pursuant to 47 U.S.C. Section 307(b) (New and Major Changes to FM Radio Only) (Other applicants can proceed to Section IV).

Applicant certifies that it provides a first aural (reception) service. Applicants answering "Yes" must provide an Exhibit.	O Yes O No [Exhibit 10]
Applicant certifies that (1) it is a Tribal Applicant, as defined in 47 C.F.R. Section 73.7000; (2) the facilities proposed in this Application will provide Tribal Coverage, as defined in 47 C.F.R. Section 73.7000, of Tribal Lands occupied by the applicant Tribe(s); (3) the proposed community of license is located on Tribal Lands, as defined in 47 C.F.R. Section 73.7000; and (4) the proposed facility would be the first local tribal-owned noncommercial educational transmission service at the proposed community of license. Applicants answering "Yes" must provide an Exhibit.	O Yes O No [Exhibit 11]
Applicant certifies that the proposed station will provide a first noncommercial educational aural service to (a) at least 10 percent of the people residing within the station's 60 dBu (1 mV/m) service contour and (b) to a minimum of 2,000 people. Applicants answering "Yes" must	C Yes C No [Exhibit 12]

CDBS Print Page 5 of 16

L	provide an Exhibit.	
	Applicant certifies that the proposed station will provide a second noncommercial educational aural service, or an aggregated first and second noncommercial educational aural service, to (a) at least 10 percent of the people residing within the station's 60 dBu (1 mV/m) service contour and (b) to a minimum of 2,000 people. Applicants answering "Yes" must provide an Exhibit.	O Yes O No [Exhibit 13]

Section IV Point System Factors - New and Major Change Applications Only (used to select among mutually exclusive radio and television applications for new stations and major modifications) **NOTE**: Applicants will not receive any additional points for amendments made after the close of the application filing window.

po	his for amendments made after the close of the application fining window.		
1.	Established Local Applicant: Applicant certifies that for at least the 24 months immediately prior to application, and continuing through the present, it qualifies as a local applicant pursuant to 47 C.F.R. Section 73.7000, that its governing documents require that such localism be maintained, and that it has placed documentation of its qualifications as an established local applicant in a local public inspection file and has submitted to the Commission copies of the documentation.	C Yes C No	
2.	Diversity of Ownership: (a) Applicant certifies that the principal community (city grade) contour of the proposed station does not overlap the principal community contour of any other authorized station (comparing radio and television to television, including non-fill-in translator stations other than those identified in 2(b) below) in which any party to the application has an attributable interest as defined in 47 C.F.R. Section 73.3555, that its governing documents require that such diversity be maintained, and that it has placed documentation of its diversity qualification in a local public inspection file and has submitted to the Commission copies of the documentation.	C Yes C No	
	(b) Is the application's certification to 2(a) based on its exclusion of translator station(s) that will be replaced with a full service station pursuant to the authorization requested here?	O Yes O No	
	If Yes, applicant must include an exhibit identifying the translator station authorization for which it will request cancellation upon commencement of operation of the proposed full service station (i.e., upon its filing of a license application and receipt of program test authority).	[Exhibit 14]	
3.	State-wide Network: Applicant certifies that (a) it has NOT claimed a credit for diversity of ownership above: (b) it is one of the three specific types of organizations described in 47 C.F.R. Section 73.7003(b)(3); and (c) it has placed documentation of its qualifications in a local public inspection file and has submitted to the Commission copies of the documentation.	O Yes O No	
4.	Technical Parameters: Applicant certifies that the numbers in the boxes below accurately reflect the new area and population that its proposal would serve with a 60 dBu (FM) or Grade B (TV) signal measured in accordance with the standard predicted contours in 47 C.F.R. Section 73.713(c) (FM) and 73.683(TV) and that it has documented the basis for its calculations in the local public inspection file and has submitted copies to the Commission. Major modification applicants should include the area of proposed increase only (exclude any area already within the station's existing service area). (Points, if any, will be determined by FCC)	O Yes O No	
	New area served in square kilometers (excluding areas of water):		
	Population served based on the most recent census block data from the United States Bureau of Census using the centroid method:		
	ECTION V - Tie Breakers - New and Major Change Applications Only (used to choose among evision applications receiving the same number of points in Section IV)	g competing radio and	
	Existing Authorizations. By placing a number in the box, the applicant certifies that it and other parties to the application have, as of the date of filing and pursuant to 47 C.F.R. Section 73.3555, attributable interests in the stated number of relevant broadcast station authorizations. Radio applicants should count all attributable full service radio stations, AM and FM, commercial and noncommercial, and FM translator stations other than fill-in stations or those identified in IV (2)(b) above. TV applicants should count all attributable full service TV stations, commercial and noncommercial and TV translator stations other than fill-in stations or those identified in IV(2)(b) above. (number of commercial and non-commercial licenses and construction permits)		
2.	Pending Applications. By placing a number in the box, the applicant certifies that it and other parties to the application have, as of the date of filing and pursuant to 47 C.F.R. Section 73.3555, attributable interests in the stated number of pending applications for new or major changes to relevant broadcast stations. Radio applicants should count all		

CDBS Print Page 6 of 16

attributable full service radio stations, AM and FM, commercial and noncommercial, and FM translator stations other than fill-in stations or those identified in IV(2)(b) above. TV applicants should count all attributable full service TV stations, commercial and noncommercial, and TV translator stations other than fill-in stations or those identified in IV(2) (b) above.

(number of pending commercial and non-commercial applications)

Section VI -- Certification

I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith. I acknowledge that all certifications and attached Exhibits are considered material representations. I hereby waive any claim to the use of any particular frequency as against the regulatory power of the United States because of the previous use of the same, whether by license or otherwise, and request an authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended.)

Typed or Printed Name of Person Signing TONY MANCARI	Typed or Printed Title of Person Signing COO
Signature	Date
	3/21/2012

Section VII Preparer's Certification

I certify that I have prepared Section VII (Engineering Data) on behalf of the applicant, and that after such preparation, I have examined and found it to be accurate and true to the best of my knowledge and belief.

examined and round it to be accurate and true to the	ne best of my knowledge and benefit
Name	Relationship to Applicant (e.g., Consulting Engineer)
DOUG VERNIER	ENGINEERING CONSULTANT
Signature	Date
	3/19/2012
Mailing Address	
TELECOMMUNICATIONS CONSULTANTS	
401 MAIN ST., SUITE 213	
City	State or Country (if foreign address) Zip Code
CEDAR FALLS	IA 50613-
Telephone Number (include area code)	E-Mail Address (if available)
3192668402	DVERNIER@V-SOFT.COM

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION PERMIT (U.S. CODE, TITLE 47, SECTION 312(a)(1)), AND/OR FORFEITURE (U.S. CODE, TITLE 47, SECTION 503).

SE	SECTION VIII - DTS Engineering			
GE	GENERAL QUESTIONS . Complete the following questions that relate to the proposed DTS facility as a whole.			
1.	Channel Number: 21			
	Zone: C I C II C III			
	Reference Point Coordinates for Table of Distances, in accordance with Section 73.626(c) of the rules: Latitude: Degrees 38 Minutes 57 Seconds 36 North South Longitude: Degrees 78 Minutes 19 Seconds 52 West East			
4.	File Number for Current Authorized Service Area: BLEDT-20100209AAB			
5.	The proposed DTS facility will operate on the DTV channel for this station as Yes O No			

CDBS Print Page 7 of 16

	established in the Post-Transition DTV Table of Allotments, 47 C.F.R. Section 73.622(i).	
6.	The proposed DTV station satisfies the interference protection provisions of 47 C.F.R. Sections 73.616 and 73.626.	• Yes C No
	If "No," attach as an Exhibit justification.	[Exhibit 40]
7.	The proposed DTV station satisfies the coverage requirement in 47 C.F.R. Section 73.625 and, therefore, will encompass the allotted principal community.	• Yes C No
	If "No," attach as an Exhibit justification.	[Exhibit 41]
8.	The proposed DTS facility satisfies the requirements in 47 C.F.R. Section 73.626 in	the following respects:
	(a) The combined coverage from all of the DTS transmitters in the proposed DTS facility covers all of the station's authorized service area, as required in 47 C.F.R. Section 73.626(f)(1).	• Yes C No
	If "No," attach as an Exhibit justification.	[Exhibit 42]
	(b) Each DTS transmitter's coverage is contained within either the DTV station's Table of Distances area (47 C.F.R. Section 73.626 (c)) or its authorized service area, except where such coverage is of a minimal amount and necessary to meet the requirements of 47 C.F.R. Section 73.626(f)(1).	
	Yes, coverage entirely contained within station's authorized service area.	
	Yes, but coverage exceeds station's authorized service area by "minimal amount".	
	O No	
	Attach as an Exhibit a justification if "No" or if "Yes but coverage exceeds station's authorized service area by minimal amount".	[Exhibit 43]
	(c) Each DTS transmitter's coverage is contiguous with at least one other DTS transmitter's coverage, as required in 47 C.F.R. Section 73.626(e)(3).	• Yes • No
	If "No," attach as an Exhibit justification.	[Exhibit 44]
	(d) The coverage from one or more DTS transmitter(s) in the DTS facility provide (s) principal community coverage, as required in 47 C.F.R. Section 73.626(e) (4).	
	Yes, one transmitter provides principal community coverage.	
	Yes, multiple transmitters provide principal community coverage.	
	C No	
	If "No," or if "Yes, multiple transmitters provide principal community coverage," attach as Exhibit No. an Exhibit justification.	[Exhibit 45]
	(e) The combined field strength of all of the DTS transmitters in the proposed DTS facility do not cause interference to another station in excess of the	• Yes C No
	criteria specified in 47 C.F.R. Section 73.616, as required in 47 C.F.R. Section 73.626(e)(5).	[Exhibit 46]
	If "No," attach as an Exhibit justification.	
	Note: The combined field strength level shall be determined by a "root-sum-square" calculation, where the combined field strength level at a given location is equal to the square root of the sum of the squared field strengths from each transmitter in the DTS network at that location.	
	(f) Each DTS transmitter in the proposed DTS facility is located within either the	• Yes • No

CDBS Print Page 8 of 16

	DTV station's Table of Distances area or its authorized service area.	[Exhibit 47]
	If "No," attach as an Exhibit justification.	
9.	Environmental Protection Act.	
	(a) The proposed DTS facility will not have a significant environmental impact, including exposure of workers or the general public to levels of RF radiation exceeding the limits specified in 47 C.F.R. Sections 1.1307 and 1.1310.	• Yes • No
	(b) Submit in an Exhibit the following for each transmitter site in the proposed DTS facility:	[Exhibit 48]
	If "Yes," provide a brief explanation for each site of why an Environmental Assessment is not required. Also describe in the Exhibit the steps that will be taken to limit RF radiation exposure to the public and to persons authorized access to each transmitter site.	
	<u>Note:</u> By checking "Yes" to this question, the applicant also certifies that it, in coordination with other users of each transmitter site, will reduce power or cease operation as necessary to protect persons having access to each site, transmitter or antenna from radio frequency electromagnetic exposure in excess of FCC guidelines.	
	If "No," provide an Environmental Assessment as required by 47 C.F.R. Section 1.1311.	
10.	The proposed DTS facility satisfies the requirements of 47 C.F.R. Section 73.1030 regarding notification to radio astronomy installations, radio receiving installations and FCC monitoring stations.	• Yes • No
11.	The antenna structures to be used by the proposed DTS facility have been registered with the Commission and will not require re-registration to support the proposed antennas, OR the FAA has previously determined that the proposed antenna structures will not adversely effect safety in air navigation and these structures qualify for later registration under the Commission's phased registration plan, OR the proposed installation on these antenna structures do not require notification to the FAA pursuant to 47 C.F.R. Section 17.7.	€ Yes C No

[Tech Specs - Transmitter Sites]

SI	ECTION VIII - DTS Engineering							
Tl	ECHNICAL SPECIFICATIONS							
	Ensure that the specifications below are accurate. Contradicting data found elsewhere in this application will be							
ars	sregarded. All items must be completed. The response "on file" is not acceptable.							
Tl	ГЕСН ВОХ							
1.	DTS Site Number: 1							
2.	Antenna Location Coordinates: (NAD 27):							
	Latitude:							
	Degrees 38 Minutes 57 Seconds 36 North South							
	Longitude:							
	Degrees 78 Minutes 19 Seconds 52							
3.	Antenna Structure Registration Number:							
	■ Not Applicable □ Notification filed with FAA							
4.	Antenna Location Site Elevation Above Mean Sea Level: 642 meters							
5.	Overall Tower Height Above Ground Level: 31 meters							
ΠĪ								

CDBS Print Page 9 of 16

6.	Height of Radiation Center Above Ground Level: 26 meters											
7.	Height of F	Radiation	Center Ab	ove Ave		400	meters					
8.	Maximum Effective Radiated Power (average power): 100 kW											
9.	Antenna Specifications: a. Manufacturer RFS Model PHP24C b. Electrical Beam Tilt: 0.75 degrees Not Applicable c. Mechanical Beam Tilt: degrees toward azimuth degrees True Not Applicable d. Polorization: Horizontal Circular Elliptical e. Directional Antenna Relative Field Values: Not applicable (Nondirectional) Rotation (Degrees): No Rotation											
	Degrees		Degrees		Degrees	Value	Degrees	Value	Degrees	Value	Degrees	Value
	0	1	10	1	20	1	30	1	40	1	50	.99
	60	.94	70	.908	80	.834	90	.72	100	.578	110	.421
	120	.268	130	.156	140	.162	150	.169	160	.161	170	.153
	180	.268	190	.421	200	.578	210	.72	220	.834	230	.908
	240	.933	250	.96	260	1	270	1	280	1	290	1
	300	1	310	1	320	1	330	1	340	1	350	1
	Additiona Azimuths		<u> </u>	1 .1			47.CED 6	· · · ·	72 (25()	. 1	DC 1.11	401
	satisfied.			posed, tr	e requirem	ents of 4	1/ C.F.R. S	sections	73.625(c) m	iust be	[Exhil	oit 49]
	f. Elevati e vary with a								n patterns tl	hat	• Ye	s 🖲 No
	g. Require	ed Exhib	oit: Attach	as an Ex	hibit all da	ta specif	ied in 47 C	C.F.R. Se	ction 73.62:	5(c).	[Exhi	bit 50]
	g. Required Exhibit: Attach as an Exhibit all data specified in 47 C.F.R. Section 73.625(c). [Exhibit 50] The elevation antenna (or radiation) pattern data shall be submitted in Office Open XML ("Excel Spreadsheet") format with the first column containing depression angle values and second (and subsequent, when applicable) column(s) containing relative field values. When applicable, the first row shall list the azimuth angle being tabulated. The range of depression angles shall be 10 degrees above horizontal (-10 degrees depression) to 90 degrees below horizontal (90 degrees depression) and shall include data points spaced not more than 0.5-degree between -5 and 10 degrees depression angle, and not more than 5 degrees elsewhere. All pattern minima and maxima shall be included. Additional elevation antenna (or radiation) pattern data may be included following the column corresponding to 350 degrees TN so that the direction(s) of maximum and minimum radiation are provided. A relative field value of 1 shall correspond to the azimuth and depression angles corresponding to the direction of maximum ERP.											
PF	REPARER'	S CERT	TFICATIO	ON ON S	SECTION	III MU	ST BE CC	OMPLE	TED AND	SIGNEI	D.	

TECH BOX

CDBS Print Page 10 of 16

1.	DTS Site N	umber: 2	2										
	Latitude:												
	Degrees 38 Minutes 36 Seconds 31 North South												
	Longitude:												
	Degrees 78 Minutes 54 Seconds 7												
3.		Antenna Structure Registration Number:											
Щ	Not Applicable Notification filed with FAA												
4.	Antenna Location Site Elevation Above Mean Sea Level: 640 meters												
므	Overall Tov								50	meters			
6.	Height of R	adiation	Center Ab	ove Gro	und Level:				40	meters			
믬	Height of R								175	meters			
느	Maximum l	Effective	e Radiated	Power (a	verage po	wer):			0.1	kW			
9.	Antenna Sı	pecificat	ions:										
	a. Manuf			del CL-1	469								
	b. Electrical Beam Tilt:												
			Not Applica	ıble									
	III		am Tilt:										
			d azimuth	1 1. 1 .									
			Not A	pplicable	;								
			_	_									
	III		Circu		-	_							
			itenna Rela			□ Not a	pplicable (Nondire	ctional)				
	Rotation (Degrees): No Rotation												
	Degrees	Value	Degrees	-	Degrees	₹====	Degrees	Value	Degrees	Value	Degrees	Value	
	0	1	10		20	0.812	30	0.622	40	0.361	50	0.086	
		0.01	70	0.01	80	0.01	90	0.01	100	0.01	110	0.01	
		0.01	130	#	140	0.01	150	0.01	160	0.01	170	0.01	
		0.01	190	0.01	200	0.01	210	0.01	220	0.01	230	0.01	
	240	0.01	250	0.01	260	0.01	270	0.01	280	0.01	290	0.01	
		0.01	310	0.086	320	0.361	330	0.622	340	0.812	350	0.947	
	Additional Azimuths	l											
				posed, th	ne requiren	nents of	17 C.F.R. S	Sections '	73.625(c) n	nust be	[Exhil	oit 49]	
	satisfied. Exhibit required.												
	f. Elevation vary with a								n patterns t	hat	• Ye	s 🖸 No	
	g. Require								ction 73.62	5(c).	[Exh	ibit 50]	
					_								
	The elevation ("Excel Spr												
	second (and												
	applicable,	the first	row shall l	ist the az	imuth ang	le being	tabulated. '	The rang	e of depres	sion			
	angles shall												
	horizontal (ou degre	ees depress	ion) and	snan melu	iue uata J	omis spac	eu not m	ore man 0.	<i>)</i> -			

CDBS Print Page 11 of 16

degree between -5 and 10 degrees depression angle, and not more than 5 degrees elsewhere. All pattern minima and maxima shall be included. Additional elevation antenna (or radiation) pattern data may be included following the column corresponding to 350 degrees TN so that the direction(s) of maximum and minimum radiation are provided. A relative field value of 1 shall correspond to the azimuth and depression angles corresponding to the direction of maximum ERP.

11	ECH BOX											
_	DTS Site Number: 3											
	Antenna Location Coordinates: (NAD 27): Latitude: Degrees 38 Minutes 36 Seconds 5 North South Longitude: Degrees 78 Minutes 37 Seconds 58 West East											
2	Antenna Str					C East						
	Not App					Λ						
4.	Antenna Lo	ocation S	ite Elevati	on Abov	e Mean Sea	a Level:			899	meters		
5.	Overall Tov	wer Heig	ght Above (Ground I	Level:				77	meters		
6.	Height of R	Radiation	Center Ab	ove Gro	und Level:				59	meters		
7.	Height of R	Radiation	Center Ab	ove Ave	rage Terra	in :			580	meters		
8.	Maximum Effective Radiated Power (average power): 0.098 kW											
9.	Antenna Specifications: a. Manufacturer SCA Model CL-1469 b. Electrical Beam Tilt: degrees Not Applicable c. Mechanical Beam Tilt: degrees toward azimuth degrees True Not Applicable d. Polorization: Horizontal Circular Elliptical e. Directional Antenna Relative Field Values: Not applicable (Nondirectional) Rotation (Degrees): 100 No Rotation											
	Degrees	Value	Degrees	Value	Degrees	Value	Degrees	Value	Degrees	Value	Degrees	Value
	0	1	10	0.947	20	0.812	30	0.622	40	0.361	50	0.086
	60	0.01	70	0.01	80	0.01	90	0.01		0.01	110	0.01
	120	0.01	130	0.01	140	0.01	150	0.01	160	0.01	170	0.01
	180	0.01	190	0.01	200	0.01	210	0.01	220	0.01	230	0.01
	240	0.01	250	0.01	260	0.01	270	0.01	1	0.01	290	0.01
	300 Additiona Azimuths	0.01 1	310	0.086	320	0.361	330	0.622	340	0.812	350	0.947
	If a directi	onal ante	enna is pro	posed, th	ne requirem	nents of 4	47 C.F.R. S	Sections '	73.625(c) m	nust be	[Exhi	bit 49]

CDBS Print Page 12 of 16

satisfied. Exhibit required.	
f. Elevation Pattern: Does the proposed antenna propose elevation radiation patterns that vary with azimuth for reasons other than the use of mechanical beam tilt?	C Yes € No
g. Required Exhibit: Attach as an Exhibit all data specified in 47 C.F.R. Section 73.625(c). The elevation antenna (or radiation) pattern data shall be submitted in Office Open XML ("Excel Spreadsheet") format with the first column containing depression angle values and second (and subsequent, when applicable) column(s) containing relative field values. When applicable, the first row shall list the azimuth angle being tabulated. The range of depression angles shall be 10 degrees above horizontal (-10 degrees depression) to 90 degrees below horizontal (90 degrees depression) and shall include data points spaced not more than 0.5-degree between -5 and 10 degrees depression angle, and not more than 5 degrees elsewhere. All pattern minima and maxima shall be included. Additional elevation antenna (or radiation) pattern data may be included following the column corresponding to 350 degrees TN so that the direction(s) of maximum and minimum radiation are provided. A relative field value of 1 shall	[Exhibit 50]
correspond to the azimuth and depression angles corresponding to the direction of maximum ERP.	

TF	CH	BOX							
1.	DTS Site Number: 4								
2.		Antenna Location Coordinates: (NAD 27):							
		tude:							
	Deg	rees 38 Minutes 28 Seconds 43 North South							
	Lon	gitude:							
		grade. trees 78 Minutes 24 Seconds 58							
2		enna Structure Registration Number:							
٥.	And 1	Not Applicable \square Notification filed with FAA							
느		**							
=	Antenna Location Site Elevation Above Mean Sea Level: 1174 meters								
5.	Overall Tower Height Above Ground Level: 17 meters								
6.	Height of Radiation Center Above Ground Level: 16 meters								
7.	Height of Radiation Center Above Average Terrain: 637 meters								
8.	Maximum Effective Radiated Power (average power): 0.039 kW								
9.	An	tenna Specifications:							
	a.	Manufacturer SCA Model CL-1469							
	b.	Electrical Beam Tilt:							
		degrees Not Applicable							
	c.	Mechanical Beam Tilt:							
		degrees toward azimuth							
	degrees True Not Applicable								
	d.	Polorization:							
		● Horizontal C Circular C Elliptical							
	e.	Directional Antenna Relative Field Values: Not applicable (Nondirectional)							
		Rotation (Degrees): 170 \square No Rotation							

CDBS Print Page 13 of 16

Degrees	Value	Degrees	Value	Degrees	Value	Degrees	Value	Degrees	Value	Degrees	Value
0	1	10	0.947	20	0.812	30	0.622	40	0.361	50	0.086
60	0.01	70	0.01	80	0.01	90	0.01	100	0.01	110	0.01
120	0.01	130	0.01	140	0.01	150	0.01	160	0.01	170	0.01
180	0.01	190	0.01	200	0.01	210	0.01	220	0.01	230	0.01
240	0.01	250	0.01	260	0.01	270	0.01	280	0.01	290	0.01
300	0.01	310	0.086	320	0.361	330	0.622	340	0.812	350	0.947
Degrees 0 60 120 180 240 300 Additional Azimuths	l										

If a directional antenna is proposed, the requirements of 47 C.F.R. Sections 73.625(c) must be satisfied. **Exhibit required.**

[Exhibit 49]

f. **Elevation Pattern:** Does the proposed antenna propose elevation radiation patterns that vary with azimuth for reasons other than the use of mechanical beam tilt?

○ Yes ○ No

g. Required Exhibit: Attach as an Exhibit all data specified in 47 C.F.R. Section 73.625(c).

[Exhibit 50]

The elevation antenna (or radiation) pattern data shall be submitted in Office Open XML ("Excel Spreadsheet") format with the first column containing depression angle values and second (and subsequent, when applicable) column(s) containing relative field values. When applicable, the first row shall list the azimuth angle being tabulated. The range of depression angles shall be 10 degrees above horizontal (-10 degrees depression) to 90 degrees below horizontal (90 degrees depression) and shall include data points spaced not more than 0.5-degree between -5 and 10 degrees depression angle, and not more than 5 degrees elsewhere. All pattern minima and maxima shall be included. Additional elevation antenna (or radiation) pattern data may be included following the column corresponding to 350 degrees TN so that the direction(s) of maximum and minimum radiation are provided. A relative field value of 1 shall correspond to the azimuth and depression angles corresponding to the direction of maximum ERP.

Exhibits

Exhibit 1

Description: PURPOSE OF APPLICATION

THIS APPLICATION PROPOSES TO INCORPORATE WVPY'S EXPERIMENTAL BOOSTER AUTHORIZATIONS AS DTS TRANSMITTERS FOR LICENSING PURPOSES.

Attachment 1

Exhibit 40

Description: DOCUMENTATION OF NO INTERFERENCE

THE ATTACHED EXHIBIT USES THE COMPUTER PROGRAM DEVELOPED BY BILL MEINTELL FOR THE FCC. THE RSS METHOD OF SUMMING INTERFERENCE SIGNAL LEVELS WAS USED FOR THIS ANALYSIS. THE DTS SYSTEM CAUSES NO INTERFERENCE TO STATIONS, CONSTRUCTION PERMITS OR APPLICATIONS ABOVE THE THRESHOLD OF 0.5%.

CDBS Print Page 14 of 16

IT SHOULD BE NOTED THAT THIS STUDY USES 0.1 KW @ 975 COR AMSL, HAAT 600 M FOR THE LURAY SITE (SITE #3). THESE PARAMETERS CLEAR THE DTS SYSTEM WITHOUT INTERFERENCE, HOWEVER THE ACTUAL OPERATING PARAMETERS FOR THIS SITE WILL BE SMALLER AT 958 M COR AMSL, 0.098 KW, HAAT = 580 M.

THE READER WILL ALSO FIND A COORDINATION LETTER FROM THE NATIONAL RADIO ASTRONOMY OBSERVATORY AT GREEN BANK, WEST VIRGINIA. NRQZ COORDINATES ARE IN NAD 83. PURSUANT TO 47 C.F.R. 1.924(A)(2) AND THE REFERENCED COORDINATION LETTER, APPLICANT WILL PROVIDE WRITTEN NOTICE TO THE NATIONAL RADIO ASTRONOMY OBSERVATORY OF THE INSTANT FILING, CONCURRENT WITH THE FILING OF THIS APPLICATION.

Attachment 40

Description	
Full OET 69 Analysis	
Summary OET-69 Analysis	
Coordination with NRZQ, Green Bank	

Exhibit 41

Description: PRINCIPAL CITY COVERAGE OF THE PROPOSED DTS SYSTEM

PLEASE SEE THE ATTACHED COVERAGE MAP SHOWING THE 48 DBU F(50-90) PRINCIPAL CITY COVERAGE CONTOUR WITH COMPLETE COVERAGE TO THE PRINCIPAL CITY, FRONT ROYAL. THE 41 DBU F(50-90) NOISE LIMITED CONTOUR IS ALSO SHOWN.

Attachment 41

Description
Principal City Coverage - Map - Showing all DTS Sites

Exhibit 43

Description: CONTAINED COVERAGE

PLEASE SEE EXHIBIT #41.

Attachment 43

Exhibit 44

Description: CONTIGIOUS COVERAGE

PLEASE SEE EXHIBIT #41.

Attachment 44

Exhibit 45

Description: PRINCIPAL CITY COVERAGE BY AT LEAST ONE DTS TRANSMITTER

PLEASE SEE EXHIBIT #41.

Attachment 45

Exhibit 46

Description: COMBINED FIELD STRENGTH

CDBS Print Page 15 of 16

PLEASE SEE EXHIBIT #40.

Attachment 46

Exhibit 47

Description: SERVICE AREA

PLEASE SEE EXHIBIT #41.

Attachment 47

Exhibit 48

Description: ENVIRONMENTAL EXHIBIT

PLEASE SEE THE ATTACHED EXHIBIT.

Attachment 48

Description

Environmental Safety Exhibit

Copy 1 - Exhibit 49

Description: DIRECTIONAL ANTENNA EXHIBIT

PLEASE SEE THE ATTACHED EXHIBIT DOCUMENTS.

Copy 1 - Attachment 49

Description

Antenna Exhibit of Licensed and Proposed WVPY Pattern

Contour-to-Contour Distances and Depression Angle Calculations

Copy 2 - Exhibit 49

Description: DIRECTIONAL ANTENNA EXHIBIT

PLEASE SEE THE ATTACHED EXHIBIT DOCUMENTS.

Copy 2 - Attachment 49

Description

Fulks Run - Antenna Exhibit

Contour-to-Contour Distances and Depression Angle Calculations

Copy 3 - Exhibit 49

Description: DIRECTIONAL ANTENNA EXHIBIT

PLEASE SEE THE ATTACHED EXHIBIT.

Copy 3 - Attachment 49

Description

CDBS Print Page 16 of 16

Luray Entenna Exhibit

Distance to contour, depression angle and HAAT table

Copy 4 - Exhibit 49

Description: DIRECTIONAL ANTENNA EXHIBIT

PLEASE SEE THE ATTACHED EXHIBIT DOCUMENTS.

Copy 4 - Attachment 49

Description	
Antenna Exhibit	
Contour-to-Contour Distances and Depression Angle Calculations	

Copy 1 - Attachment 50

	Description
WVPY-TV - Elevation Pattern Values	

Copy 2 - Attachment 50

20 P 3 = 120000211110110		
	Description	
Faulks Run Elevation Pattern		

Copy 3 - Attachment 50

Copy 4 - Attachment 50

Description	
Ruckersville - Vertical Elevation Field Values	

Percent allowed new interference: 0.500
Percent allowed new interference to non Class A LPTV: 2.000
Census data selected 2000
Data Base Selected
./data_files/pt_tvdb.sff
TV INTERFERENCE and SPACING ANALYSIS PROGRAM

Date: 12-13-2011 Time: 14:09:19

Record Selected for Analysis (Record is a DTS)

FULK BLEDT -20111219AAX FRONT ROYAL VA US
Channel 21 ERP 0.010 kw HAAT 00175 m RCAMSL 00680 m
Latitude 038-36-31 Longitude 0078-54-07
Status APP Zone 1 Border Site number: 01
Dir Antenna Make CDB Model 0000000107752 Beam tilt N Ref Azimuth 000.0
Elevation Antenna Pattern ID: 120
Last update 00000000 Cutoff date 00000000 Docket
Comments
Applicant SHENANDOAH VALLEY EDUCATIONAL TELEVI

FRONT ROYAL RUCK BLEDT -20111219AAX VA US Channel 21 ERP 0.039 kW HAAT 00646 m RCAMSL 01190 m Latitude 038-28-43 Longitude 0078-24-58 Zone 1 Border Site number: 02 Dir Antenna Make CDB Model 0000000107752 Beam tilt N Ref Azimuth 170.0 Elevation Antenna Pattern ID: 120 Last update 00000000 Cutoff date 00000000 Docket Comments Applicant SHANANDOAH VALLEY EDUCATIONAL TELEVI

-20111219AAX LURA BLEDT FRONT ROYAL VA US Channel 21 ERP 0.100 kW HAAT 00600 m RCAMSL 00975 m Latitude 038-36-05 Longitude 0078-37-58 Site number: 03 Status APP zone 1 Border Dir Antenna Make CDB Model 0000000107752 Beam tilt N Ref Azimuth 100.0 Elevation Antenna Pattern ID: 120 Last update 00000000 Cutoff date 00000000 Comments Applicant SHENANDOAH VALLEY EDUCATIONAL TELEVI

-20111219AAX FRONT ROYAL VA US Channel 21 ERP 100.0 kW HAAT 00400 m RCAMSL 00668 m Latitude 038-57-36 Longitude 0078-19-52 Border Status APP zone 1 Site number: 04 Dir Antenna Make CDB Model 0000000089962 Beam tilt Y Ref Azimuth 000.0 Elevation Antenna Pattern ID: 121 Last update 00000000 Cutoff date 00000000 Docket Comments Applicant SHENANDOAH VALLEY EDUCATIONAL TELEVI

Cell Size for Service Analysis 2.0 km/side
Distance Increments for Longley-Rice Analysis 1.00 km

Facility (site # 01) meets maximum height/power limits
Facility (site # 02) meets maximum height/power limits
Facility (site # 03) meets maximum height/power limits

Facility (site # 04) meets maximum height/power limits

Site number	1		
Azimuth	ERP	HAAT	41.0 dBu F(50,90)
(Deg)	(kw)	(m)	(km)
0.0	0.010	120.7	18.7
45.0	0.000	251.2	12.4
90.0	0.000	318.7	9.2
135.0	0.000	286.4	8.8
180.0	0.000	241.3	8.2
225.0	0.000	82.4	5.0
270.0	0.000	33.0	3.2
315.0	0.000	92.4	7.8

Database HAAT does not agree with computed HAAT Database HAAT: 175 Computed HAAT: 178

Site numbe	r 2		
Azimuth	ERP	HAAT	41.0 dBu F(50,90)
(Deg)	(kW)	(m)	(km)
0.0	0.000	511.1	11.5
45.0	0.000	688.0	12.6
90.0	0.000	851.0	14.1
135.0	0.009	847.5	39.5
180.0	0.035	703.3	45.2
225.0	0.000	339.6	9.4
270.0	0.000	593.2	12.0
315.0	0.000	626.7	12.1

Database HAAT does not agree with computed HAAT Database HAAT: 646 Computed HAAT: 645

Site numbe	r 3		
Azimuth	ERP	HAAT	41.0 dBu F(50,90)
(Deg)	(kw)	(m)	(km)
0.0	0.000	659.1	12.4
45.0	0.000	661.8	16.1
90.0	0.089	679.0	50.8
135.0	0.024	516.6	39.7
180.0	0.000	668.5	12.4
225.0	0.000	551.9	11.8
270.0	0.000	628.8	12.2
315.0	0.000	635.3	12.2

Database HAAT does not agree with computed HAAT Database HAAT: 600 Computed HAAT: 625

4		
ERP	HAAT	41.0 dBu F(50,90)
(kw)	(m)	(km)
99.557	467.0	91.0
98.594	473.1	91.4
51.662	497.5	88.2
2.512	403.9	63.6
7.103	343.7	66.3
74.140	236.2	71.7
99.231	405.0	87.6
99.123	385.3	86.4
	ERP (kW) 99.557 98.594 51.662 2.512 7.103 74.140 99.231	ERP (kW) (m) 99.557 467.0 98.594 473.1 51.662 497.5 2.512 403.9 7.103 343.7 74.140 236.2 99.231 405.0

Database HAAT does not agree with computed HAAT Database HAAT: 400 Computed HAAT: 401

Evaluation toward Class A Stations from site # 01

No Spacing violations or contour overlap to Class A stations from site # 01

Evaluation toward Class A Stations from site # 02

No Spacing violations or contour overlap to Class A stations from site # 02

Evaluation toward Class A Stations from site # 03

No Spacing violations or contour overlap to Class A stations from site # 03

Evaluation toward Class A Stations from site # 04

No Spacing violations or contour overlap to Class A stations from site # 04

Class A Evaluation Complete

SPACING VIOLATION FOUND BETWEEN STATION

FULK 21 FRONT ROYAL VA BLEDT 20111219AAX Site # 01

and station

SHORT TO: WVPY 21 FRONT ROYAL VA BLEDT 20100209AAB 038-57-36 0078-19-52

Reg. separation 196.3 Actual separation 63.1 Short 133.2 km

SHORT TO: WVPY 21 FRONT ROYAL 38 -57-36 78 -19-52 VA DTVPLN DTVP0767

Req. separation 196.3 Actual separation 63.1 Short 133.2 km

LANDMOBILE SPACING VIOLATIONS FOUND

NONE from Site # 01

SPACING VIOLATION FOUND BETWEEN STATION

RUCK 21 FRONT ROYAL VA BLEDT 20111219AAX Site # 02

and station

SHORT TO: WVPY 21 FRONT ROYAL VA BLEDT 20100209AAB

038-57-36 0078-19-52

Req. separation 196.3 Actual separation 53.9 Short 142.4 km

SHORT TO: WVPY 21 38 -57-36 78 -19-52 21 FRONT ROYAL DTVP0767 VA DTVPLN

Req. separation 196.3 Actual separation 53.9 Short 142.4 km

LANDMOBILE SPACING VIOLATIONS FOUND

NONE from Site # 02

SPACING VIOLATION FOUND BETWEEN STATION

LURA 21 FRONT ROYAL VA BLEDT 20111219AAX Site # 03

and station

SHORT TO: WVPY 21 FRONT ROYAL VA BLEDT 20100209AAB

038-57-36 0078-19-52

Req. separation 196.3 Actual separation 47.7 Short 148.6 km

SHORT TO: WVPY 21 FRONT ROYAL **DTVP0767** VA DTVPLN

38 -57-36 78 -19-52

Req. separation 196.3 Actual separation 47.7 Short 148.6 km

LANDMOBILE SPACING VIOLATIONS FOUND

NONE from Site # 03

SPACING VIOLATION FOUND BETWEEN STATION

21 FRONT ROYAL 20111219AAX Site # 04 MAIN VA BLEDT

and station

VA BLEDT 20100209AAB SHORT TO: WVPY 21 FRONT ROYAL

038-57-36 0078-19-52 Req. separation 196.3 Actual separation 0.0 Short 196.3 km

SHORT TO: WVPY 21 FRONT ROYAL VA DTVPLN DTVP0767 38 -57-36 78 -19-52 Req. separation 196.3 Actual separation 0.0 Short 196.3 km

NONE from Site # 04

Checks to Site Number 01

Proposed facility OK to FCC Monitoring Stations

Proposed facility within West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Proposed station is OK toward AM broadcast stations

Checks to Site Number 02

Proposed facility OK to FCC Monitoring Stations

Proposed facility OK toward West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Proposed station is OK toward AM broadcast stations

Checks to Site Number 03

Proposed facility OK to FCC Monitoring Stations

Proposed facility within West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Proposed station is OK toward AM broadcast stations

Checks to Site Number 04

Proposed facility OK to FCC Monitoring Stations

Proposed facility OK toward West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Proposed station is OK toward AM broadcast stations

Start of Interference Analysis

	Prop	osed Station		
Channel	Call	City/State	ARN	
21	FULK	FRONT ROYAL VA	BLEDT	20111219AAX

Stations Potentially Affected by Proposed Station

Chan	Call	City/State	Dist(km)	Status	Application	on Ref. No.
20	WWLM-CA	WASHINGTON PA	209.7	CP	BDFCDTA	20081208AAK
20	WWCW	LYNCHBURG VA	156.8	LIC	BLCDT	20090619ABM
21	WUPX-TV	MOREHEAD KY	420.2	LIC	BLCDT	20040901ACJ
21	WBOC-TV	SALISBURY MD	283.4	LIC	BLCDT	20090618ABK
21	W21CK-D	CHARLOTTE NC	417.6	LIC	BLDTA	20110706AAV
21	WBNS-TV	COLUMBUS OH	385.8	LIC	BLCDT	20021025ABK
21	WBNS-TV	COLUMBUS OH	385.8	APP	BPCDT	20080620ANA
21	WHP-TV	HARRISBURG PA	260.1	LIC	BLCDT	20090615ADL
21	WHP-TV	HARRISBURG PA	260.1	CP	BPCDT	20100325ABG
22	WRIC-TV	PETERSBURG VA	166.7	LIC	BLCDT	20090209ABZ
24	WAZH-CA	HARRISONBURG VA	29.1	LIC	BLTTL	19960823JC
25	WAZM-CA	STAUNTON-WAYNESBORO VA	26.5	LIC	BLTTL	20011107ABW
28	WAZF-CA	WINCHESTER/FRONT ROY VA	90.4	LIC	BLTTL	19940422IK

Analysis of Interference to Affected Station 1

Analysis of current record
Channel Call City/State Application Ref. No.
20 WWLM-CA WASHINGTON PA BDFCDTA -20081208AAK

Stations Potentially Affecting This Station

Chan	Call	City/State	Dist(km)	Status	Applicati	on Ref. No.
19	WYFX-LD	YOUNGSTOWN OH	102.4	LIC	BLDTL	-20110329AAF
19	WEMW-CD	GREENSBURG PA	55.5	CP	BDISDTL	-20060823AAL
20	WFMJ-TV	YOUNGSTOWN OH	104.7	LIC	BLCDT	-20061013ABM
20	WWCW	LYNCHBURG VA	323.2	LIC	BLCDT	-20090619ABM
20	NEW	ROANOKE WV	139.0	APP	BNPDTL	-20100514AAR
21	WPXI	DERRY PA	86.4	CP	BDRTCT	-20090610ABT
21	FULK	FRONT ROYAL VA	209.7	APP	BLEDT	-20111219AAX
21	RUCK	FRONT ROYAL VA		APP	BLEDT	-20111219AAX
21	LURA	FRONT ROYAL VA		APP	BLEDT	-20111219AAX
21	MAIN	FRONT ROYAL VA		APP	BLEDT	-20111219AAX

Proposed station is beyond the site to nearest cell evaluation distance

Chan

21

call

WLIW

City/State

GARDEN CITY NY

```
2
```

Analysis of current record City/State Application Ref. No. Channel 1 call 20 LYNCHBURG VA BLCDT -20090619ABM WWCW Stations Potentially Affecting This Station Chan City/State Dist(km) Status Application Ref. No. call -20070418ACV 19 WCWG LEXINGTON NC 162.4 LIC **BLCDT** $\overline{19}$ **WCAV** CHARLOTTESVILLE VA 125.3 **BLCDT** -20090522ADB LIC 20 333.0 WUND-TV EDENTON NC LIC **BMLEDT** -20101027ABX 20 WFMJ-TV YOUNGSTOWN OH 426.8 -20061013ABM LIC BLCDT 21 **WVPY** FRONT ROYAL VA 214.8 PLN **DTVPLN** -DTVP0767 21 **FULK** FRONT ROYAL VA 156.8 APP BLEDT -20111219AAX 21 RUCK FRONT ROYAL VA 167.2 APP **BLEDT** -20111219AAX 21 LURA FRONT ROYAL VA 167.2 APP -20111219AAX **BLEDT** APP 21 FRONT ROYAL VA 214.8 -20111219AAX MAIN **BLEDT** Proposal causes no interference Analysis of Interference to Affected Station Analysis of current record Application Ref. No. Channel Call City/State -20040901ACJ 21 WUPX-TV MOREHEAD KY **BLCDT** Stations Potentially Affecting This Station Chan City/State Dist(km) Status Application Ref. No. Call 20 209.4 -20090619ABD WBXX-TV CROSSVILLE TN LIC **BLCDT** 313.5 21 -20100803ADB WFYI INDIANAPOLIS IN LIC **BLEDT** 21 WBNS-TV COLUMBUS OH 235.3 LIC **BLCDT** -20021025ABK 21 235.3 -20080620ANA WBNS-TV COLUMBUS OH APP **BPCDT** 21 WHNS GREENVILLE SC 314.6 LIC **BLCDT** -20100430ADX 21 -20060414AAU WUXP-TV NASHVILLE TN 334.5 LIC **BLCDT** 21 **FULK** FRONT ROYAL VA 420.2 APP **BLEDT** -20111219AAX 22 WCPO-TV CINCINNATI OH 154.9 LIC **BLCDT** -20101216AAF 21 FRONT ROYAL VA APP -20111219AAX RUCK **BLEDT** 21 FRONT ROYAL VA -20111219AAX LURA APP **BLEDT** 21 FRONT ROYAL VA -20111219AAX MAIN APP **BLEDT** Proposed station is beyond the site to nearest cell evaluation distance Analysis of Interference to Affected Station Analysis of current record City/State Application Ref. No. Channel Call -20090618ABK 21 WBOC-TV SALISBURY MD **BLCDT** Stations Potentially Affecting This Station

Dist(km) Status

315.6 APP

Application Ref. No.

-20080620AID

BMPEDT

```
-20090612AEP
21
     WLIW
               GARDEN CITY NY
                                             315.6
                                                    LIC
                                                            BLEDT
21
     WHP-TV
               HARRISBURG PA
                                             230.0
                                                    LIC
                                                            BLCDT
                                                                        -20090615ADL
     WHP-TV
21
                                             230.0
                                                                        -20100325ABG
               HARRISBURG PA
                                                    CP
                                                            BPCDT
21
     WVPY
               FRONT ROYAL VA
                                             238.4
                                                    PLN
                                                            DTVPLN
                                                                        -DTVP0767
               FRONT ROYAL VA
FRONT ROYAL VA
FRONT ROYAL VA
21
     FULK
                                             283.4
                                                    APP
                                                            BLEDT
                                                                        -20111219AAX
21
                                             241.2
                                                                        -20111219AAX
     RUCK
                                                    APP
                                                            BLEDT
21
                                             260.0
                                                                        -20111219AAX
     LURA
                                                    APP
                                                            BLEDT
21
22
               FRONT ROYAL VA
                                             238.4
                                                    APP
                                                                        -20111219AAX
     MAIN
                                                            BLEDT
               CAMDEN NJ
                                             152.5
                                                                        -20070611AAY
     WNJS
                                                    LIC
                                                            BLEDT
22
                                             152.5
     WNJS
               CAMDEN NJ
                                                    CP
                                                            BPEDT
                                                                        -20080620ALH
                                                                        -20090209ABZ
22
     WRIC-TV
               PETERSBURG VA
                                             203.9
                                                    LIC
                                                            BLCDT
Proposal causes no interference
```

Analysis of Interference to Affected Station 5

Analysis of current record

Channel Call City/State Application Ref. No. 21 W21CK-D CHARLOTTE NC BLDTA -20110706AAV

Stations Potentially Affecting This Station

Chan 20	Call WCCB	City/State HICKORY NC	Dist(km) 72.2	Status APP	Application BDRTCDT	on Ref. No. -20090824AHX
20	W20DD-D	MARION, ETC. NC	81.7	LIC	BLDTT	-20100209ABG
21	WPBA	ATLANTA GA	355.0	LIC	BLEDT	-20041013ABK
21	WUPX-TV	MOREHEAD KY	388.8	LIC	BLCDT	-20040901ACJ
21	WHWD-LP	STATESVILLE NC	67.3	LIC	BLTT	-20070308ABW
21	WHWD-LP	STATESVILLE NC	67.3	APP	BDFCDTT	-20060331AVP
21	W21CA	COLUMBIA SC	127.3	LIC	BLTTL	-20031001ALE
21	WWMB	FLORENCE SC	168.7	LIC	BLCDT	-20090619ACJ
21	WHNS	GREENVILLE SC	164.0	LIC	BLCDT	-20100430ADX
21	WCYB-TV	KINGSPORT TN	213.3	CP	BDRTCDT	-20100203AAZ
21	FULK	FRONT ROYAL VA	417.6	APP	BLEDT	-20111219AAX
22	WCNC-TV	CHARLOTTE NC	31.4	CP	BPCDT	-20080617AEH
22	WCNC-TV	CHARLOTTE NC	31.4	LIC	BLCDT	-20031211ABN
21	RUCK	FRONT ROYAL VA		APP	BLEDT	-20111219AAX
21	LURA	FRONT ROYAL VA		APP	BLEDT	-20111219AAX
21	MAIN	FRONT ROYAL VA		APP	BLEDT	-20111219AAX

Proposed station is beyond the site to nearest cell evaluation distance

Analysis of Interference to Affected Station 6

Analysis of current record

Channel Call City/State Application Ref. No. 21 WBNS-TV COLUMBUS OH BLCDT -20021025ABK

Stations Potentially Affecting This Station

Chan	Call	City/State	Dist(km)	Status	Application	on Ref. No.
21	WFYI	INDIANAPOLIS IN	270.5	LIC	BLEDT	-20100803ADB
21	WUPX-TV	MOREHEAD KY	235.3	LIC	BLCDT	-20040901ACJ
21	WMYD	DETROIT MI	275.6	LIC	BLCDT	-20040524A0G
21	WVPY	FRONT ROYAL VA	418.3	PLN	DTVPLN	-DTVP0767
21	FULK	FRONT ROYAL VA	385.8	APP	BLEDT	-20111219AAX
21	LURA	FRONT ROYAL VA	407.6	APP	BLEDT	-20111219AAX

```
21
    MAIN
             FRONT ROYAL VA
                                        418.3 APP
                                                      BLEDT
                                                                -20111219AAX
22
    WCPO-TV CINCINNATI OH
                                        157.3 LIC
                                                      BLCDT
                                                                -20101216AAF
21
             FRONT ROYAL VA
                                               APP
                                                                -20111219AAX
     RUCK
                                                      BLEDT
Proposal causes no interference
```

Analysis of Interference to Affected Station 7

Analysis of current record

Channel Call City/State Application Ref. No. 21 WBNS-TV COLUMBUS OH BPCDT -20080620ANA

Stations Potentially Affecting This Station

Chan	Call	City/State	Dist(km)	Status	Application	on Ref. No.
21	WFYI	INDIANAPOLIS IN	270.5	LIC	BLEDT	-20100803ADB
21	WUPX-TV	MOREHEAD KY	235.3	LIC	BLCDT	-20040901ACJ
21	WMYD	DETROIT MI	275.6	LIC	BLCDT	-20040524A0G
21	WVPY	FRONT ROYAL VA	418.3	PLN	DTVPLN	-DTVP0767
21	FULK	FRONT ROYAL VA	385.8	APP	BLEDT	-20111219AAX
21	LURA	FRONT ROYAL VA	407.6	APP	BLEDT	-20111219AAX
21	MAIN	FRONT ROYAL VA	418.3	APP	BLEDT	-20111219AAX
22	WCPO-TV	CINCINNATI OH	157.3	LIC	BLCDT	-20101216AAF
21	RUCK	FRONT ROYAL VA		APP	BLEDT	-20111219AAX
Prop	osal caus	es no interference				

Analysis of Interference to Affected Station 8

Analysis of current record

Channel Call City/State Application Ref. No. 21 WHP-TV HARRISBURG PA BLCDT -20090615ADL

Stations Potentially Affecting This Station

Chan	Call	City/State	Dist(km)			on Ref. No.
21	WBOC-TV	SALISBURY MD	230.0	LIC	BLCDT	-20090618ABK
21	WLIW	GARDEN CITY NY	292.6	APP	BMPEDT	-20080620AID
21	WLIW	GARDEN CITY NY	292.6	LIC	BLEDT	-20090612AEP
21	WWTI	WATERTOWN NY	404.1	LIC	BLCDT	-20040128AFQ
21	WVPY	FRONT ROYAL VA	198.4	PLN	DTVPLN	-DTVP0767
21	FULK	FRONT ROYAL VA	260.1	APP	BLEDT	-20111219AAX
21	RUCK	FRONT ROYAL VA	246.4	APP	BLEDT	-20111219AAX
21	LURA	FRONT ROYAL VA	245.9	APP	BLEDT	-20111219AAX
21	MAIN	FRONT ROYAL VA	198.4	APP	BLEDT	-20111219AAX
22	WNJS	CAMDEN NJ	185.5	LIC	BLEDT	-20070611AAY
22	WNJS	CAMDEN NJ	185.5	CP	BPEDT	-20080620ALH

Total scenarios = 2

Result key: 1

Scenario 1 Affected station 8

Before Analysis

Results for: 21A PA HARRISBURG BLCDT 20090615ADL LIC

HAAT 369.0 m, ATV ERP 450.0 kW

within Noise Limited Contour POPULATION AREA (sq km) 2554785 25212.2

```
not affected by terrain losses
                                       2390544
                                                     22771.3
   lost to NTSC IX
                                                         0.0
   lost to additional IX by ATV
                                        127827
                                                      1336.9
                                        127827
                                                      1336.9
   lost to ATV IX only
   lost to all IX
                                        127827
                                                      1336.9
 Potential Interfering Stations Included in above Scenario
                                                                    1
                                         20090618ABK
21A MD SALISBURY
                              BLCDT
                                                       LIC
21A NY GARDEN CITY
                                         20090612AEP
                              BLEDT
                                                       LIC
21A VA FRONT ROYAL
                              DTVPLN
                                         DTVP0767
                                                       PLN
After Analysis
Results for: 21A PA HARRISBURG
                                            BLCDT
                                                       20090615ADL LIC
   HAAT 369.0 m, ATV ERP 450.0 kW
                                                  AREA (sq km)
25212.2
                                    POPULATION
   within Noise Limited Contour
                                       2554785
   not affected by terrain losses
                                       2390544
                                                     22771.3
                                                         0.0
   lost to NTSC IX
                                                      1481.4
                                        133487
   lost to additional IX by ATV
   lost to ATV IX only lost to all IX
                                        133487
                                                      1481.4
                                        133487
                                                      1481.4
 Potential Interfering Stations Included in above Scenario
                                                                    1
21A MD SALISBURY
                              BLCDT
                                         20090618ABK
                                                      LIC
21A NY GARDEN CITY
                              BLEDT
                                         20090612AEP
                                                      LIC
21A VA FRONT ROYAL
                              BLEDT
                                         20111219AAX APP
                     0.2501%
Percent new IX =
Result key:
                   Affected station
Scenario
Before Analysis
Results for: 21A PA HARRISBURG
                                            BLCDT
                                                       20090615ADL LIC
   HAAT 369.0 m, ATV ERP 450.0 kW
                                    POPULATION
                                                   AREA (sq km)
                                                     25212.2
   within Noise Limited Contour
not affected by terrain losses
                                       2554785
                                       2390544
                                                     22771.3
   lost to NTSC IX
                                                         0.0
                                             0
                                        130632
   lost to additional IX by ATV
                                                      1352.9
   lost to ATV IX only
                                        130632
                                                      1352.9
   lost to all IX
                                        130632
                                                      1352.9
 Potential Interfering Stations Included in above Scenario
                                                                    2
21A MD SALISBURY
                              BLCDT
                                         20090618ABK
                                                      LIC
21A NY GARDEN CITY
                              BMPEDT
                                         20080620AID
                                                       APP
21A VA FRONT ROYAL
                              DTVPLN
                                         DTVP0767
                                                       PLN
After Analysis
Results for: 21A PA HARRISBURG
                                            BLCDT
                                                       20090615ADL LIC
   HAAT 369.0 m, ATV ERP 450.0 kW
                                                  AREA (sq km)
25212.2
                                    POPULATION
   within Noise Limited Contour
not affected by terrain losses
                                       2554785
                                       2390544
                                                     22771.3
   lost to NTSC IX
                                             0
                                                         0.0
   lost to additional IX by ATV
                                        136166
                                                      1493.5
   lost to ATV IX only
                                                      1493.5
                                        136166
   lost to all IX
                                        136166
                                                      1493.5
 Potential Interfering Stations Included in above Scenario
                                                                    2
```

21A MD SALISBURY BLCDT 20090618ABK LIC 21A NY GARDEN CITY BMPEDT 20080620AID APP 21A VA FRONT ROYAL BLEDT 20111219AAX APP

Percent new IX = 0.2449%

Worst case new IX 0.2501% Scenario 1

Analysis of Interference to Affected Station 9

Analysis of current record

Channel Call City/State Application Ref. No. 21 WHP-TV HARRISBURG PA BPCDT -20100325ABG

Stations Potentially Affecting This Station

Chan	Call	City/State	Dist(km)	Status	Application	on Ref. No.
21	WBOC-TV	SALISBURY MD	230.0	LIC	BLCDT	-20090618ABK
21	WLIW	GARDEN CITY NY	292.6	APP	BMPEDT	-20080620AID
21	WLIW	GARDEN CITY NY	292.6	LIC	BLEDT	-20090612AEP
21	WWTI	WATERTOWN NY	404.1	LIC	BLCDT	-20040128AFQ
21	WVPY	FRONT ROYAL VA	198.4	PLN	DTVPLN	-DTVP0767
21	FULK	FRONT ROYAL VA	260.1	APP	BLEDT	-20111219AAX
21	RUCK	FRONT ROYAL VA	246.4	APP	BLEDT	-20111219AAX
21	LURA	FRONT ROYAL VA	245.9	APP	BLEDT	-20111219AAX
21	MAIN	FRONT ROYAL VA	198.4	APP	BLEDT	-20111219AAX
22	WNJS	CAMDEN NJ	185.5	LIC	BLEDT	-20070611AAY
22	WNJS	CAMDEN NJ	185.5	CP	BPEDT	-20080620ALH

Total scenarios = 2

Result key: 3

Scenario 1 Affected station 9

Before Analysis

Results for: 21A PA HARRISBURG BPCDT 20100325ABG CP HAAT 369.0 m, ATV ERP 750.0 kW

POPULATION AREA (sq km) 27696.0 within Noise Limited Contour 2763761 not affected by terrain losses 2530273 24773.4 lost to NTSC IX 0.0 0 lost to additional IX by ATV 162956 1429.2 lost to ATV IX only lost to all IX 162956 1429.2 162956 1429.2

Potential Interfering Stations Included in above Scenario 1

21A MD SALISBURY **BLCDT** 20090618ABK LIC 21A NY GARDEN CITY **BLEDT** 20090612AEP LIC 22A NJ CAMDEN 20080620ALH **BPEDT** CP 21A VA FRONT ROYAL **DTVP0767 DTVPLN** PLN

After Analysis

Results for: 21A PA HARRISBURG BPCDT 20100325ABG CP

HAAT 369.0 m, ATV ERP 750.0 kw

within Noise Limited Contour 2763761 27696.0 not affected by terrain losses 2530273 24773.4

```
lost to NTSC IX
                                                     0.0
                                     172542
                                                  1581.7
   lost to additional IX by ATV
   lost to ATV IX only
                                     172542
                                                  1581.7
                                     172542
                                                  1581.7
   lost to all IX
 Potential Interfering Stations Included in above Scenario
                                                               1
21A MD SALISBURY
                                      20090618ABK
                            BLCDT
                                                   LIC
21A NY GARDEN CITY
                            BLEDT
                                      20090612AEP
                                                   LIC
22A NJ CAMDEN
                                      20080620ALH
                                                   CP
                            BPEDT
                                      20111219AAX
21A VA FRONT ROYAL
                            BLEDT
                                                   APP
Percent new IX =
                    0.4049%
Result key:
                   4
                  Affected station
                                           9
Scenario
Before Analysis
Results for: 21A PA HARRISBURG
                                         BPCDT
                                                   20100325ABG CP
   HAAT 369.0 m, ATV ERP 750.0 kW
                                  POPULATION
                                               AREA (sq km)
                                                 27696.0
   within Noise Limited Contour
                                    2763761
   not affected by terrain losses
                                    2530273
                                                 24773.4
   lost to NTSC IX
                                          n
                                                     0.0
   lost to additional IX by ATV
                                     164619
                                                  1457.3
   lost to ATV IX only
                                     164619
                                                  1457.3
   lost to all IX
                                     164619
                                                  1457.3
 Potential Interfering Stations Included in above Scenario
                                                               2
21A MD SALISBURY
                            BLCDT
                                      20090618ABK
                                                  LIC
21A NY GARDEN CITY
                            BMPEDT
                                      20080620AID
                                                   APP
22A NJ CAMDEN
                            BPEDT
                                      20080620ALH
                                                   CP
                                      DTVP0767
21A VA FRONT ROYAL
                           DTVPLN
                                                   PLN
After Analysis
                                                   20100325ABG CP
Results for: 21A PA HARRISBURG
                                         BPCDT
   HAAT 369.0 m, ATV ERP 750.0 kW
                                               AREA (sq km)
27696.0
                                  POPULATION
   within Noise Limited Contour
                                    2763761
   not affected by terrain losses
                                                 24773.4
                                    2530273
   lost to NTSC IX
                                          0
                                                     0.0
                                                  1597.8
   lost to additional IX by ATV
                                     173725
   lost to ATV IX only
                                     173725
                                                  1597.8
                                     173725
                                                  1597.8
   lost to all IX
 Potential Interfering Stations Included in above Scenario
                                                               2
21A MD SALISBURY
                            BLCDT
                                      20090618ABK
                                                   LIC
21A NY GARDEN CITY
                            BMPEDT
                                      20080620AID
                                                   APP
22A NJ CAMDEN
                            BPEDT
                                      20080620ALH
                                                   CP
21A VA FRONT ROYAL
                            BLEDT
                                      20111219AAX
                                                  APP
Percent new IX =
                    0.3849%
                    0.4049% Scenario
                                           1
Worst case new IX
```

Analysis of Interference to Affected Station 10

Analysis of current record

Channel Call City/State Application Ref. No. 22 WRIC-TV PETERSBURG VA BLCDT -20090209ABZ

Stations Potentially Affecting This Station

Chan	Call	City/State	Dist(km)	Status	Application	on Ref. No.
21	WBOC-TV	SALISBURY MD	203.9	LIC	BLCDT	-20090618ABK
21	WVPY	FRONT ROYAL VA	173.0	PLN	DTVPLN	-DTVP0767
21	FULK	FRONT ROYAL VA	166.7	APP	BLEDT	-20111219AAX
21	RUCK	FRONT ROYAL VA	128.9	APP	BLEDT	-20111219AAX
21	LURA	FRONT ROYAL VA	151.0	APP	BLEDT	-20111219AAX
21	MAIN	FRONT ROYAL VA	173.0	APP	BLEDT	-20111219AAX
22	WCNC-TV	CHARLOTTE NC	399.7	CP	BPCDT	-20080617AEH
22	WCNC-TV	CHARLOTTE NC	399.7	LIC	BLCDT	-20031211ABN
22	WNJS	CAMDEN NJ	343.5	LIC	BLEDT	-20070611AAY
22	WNJS	CAMDEN NJ	343.5	CP	BPEDT	-20080620ALH
23	WUNK-TV	GREENVILLE NC	217.8	LIC	BLEDT	-20100913ACD
Proposal causes no interference						

Analysis of Interference to Affected Station 11

Analysis of current record
Channel Call City/State Application Ref. No.
24 WAZH-CA HARRISONBURG VA BLTTL -19960823JC

Stations Potentially Affecting This Station

Chan	Call	City/State	Dist(km)	Status	Application	on Ref. No.
21	WVPY	FRONT ROYAL VA	42.5	LIC	BLEDT	-20100209AAB
21	WVPY	FRONT ROYAL VA	42.5	PLN	DTVPLN	-DTVP0767
21	FULK	FRONT ROYAL VA	29.1	APP	BLEDT	-20111219AAX
21	RUCK	FRONT ROYAL VA	54.1	APP	BLEDT	-20111219AAX
21	LURA	FRONT ROYAL VA	32.3	APP	BLEDT	-20111219AAX
21	MAIN	FRONT ROYAL VA	42.5	APP	BLEDT	-20111219AAX
23	NEW	HARRISONBURG VA	41.1	APP	BNPDTL	-20100714AAJ
23	w23dr-d	ROMNEY WV	50.7	LIC	BLDTT	-20090609AAZ
24	WKPI-TV	PIKEVILLE KY	369.4	LIC	BLEDT	-20020313ABL
24	WSFJ-TV	NEWARK OH	360.2	LIC	BLCDT	-20060620ABC
24	WATM-TV	ALTOONA PA	192.5	LIC	BLCDT	-20050603ACF
24	WJET-TV	ERIE PA	369.4	LIC	BLCDT	-20090615ACF
24	WEFC-TV	DANVILLE VA	216.2	CP	BPCDT	-20080317AIL
24	WNVC	FAIRFAX VA	136.9	LIC	BLEDT	-20090612ACS
24	W24DK	WOODSTOCK VA	22.3	CP	BNPTTL	-20000831AOC
24	w64cz	CLARKSBURG WV	137.9	CP	BDISDTL	-20090824ACB
26	WHAG-TV	HAGERSTOWN MD	114.9	LIC	BLCDT	-20090612AFP
28	WFPT	FREDERICK MD	136.4	LIC	BLEDT	-20090330AFA
32	WVIR-TV	CHARLOTTESVILLE VA	101.3	LIC	BLCDT	-20040908AAE
39	WJAL	HAGERSTOWN MD	135.3	LIC	BLCDT	-20090804ACD
Prop	Proposal causes no interference					

Analysis of Interference to Affected Station 12

Analysis of current record
Channel Call City/State Application Ref. No.
25 WAZM-CA STAUNTON-WAYNESBORO VA BLTTL -20011107ABW

Stations Potentially Affecting This Station

Chan 21 21 21 21 22 24 25 25 25 25 25 25	Call WVPY WVPY FULK RUCK LURA MAIN WRIC-TV WAZH-CA WUNC-TV KDKA-TV WTVE WTVE WTVE WTVE WTVE	City/State FRONT ROYAL VA HARRISONBURG VA CHAPEL HILL NC PITTSBURGH PA READING PA	Dist(km) 73.7 73.7 26.5 32.3 26.1 73.7 141.7 51.9 283.0 256.9 355.2 340.9 355.2 329.2 141.7	Status LIC PLN APP APP APP LIC	Application BLEDT DTVPLN BLEDT BLEDT BLEDT BLEDT BLEDT BLCDT BLTTL BLEDT BLCDT	On Ref. No20100209AAB -DTVP0767 -20111219AAX -20111219AAX -20111219AAX -20111219AAX -20111219AAX -20090209ABZ -19960823JC -20090824ABP -20041004ACS -20081117ADZ -20100422ACQ -20100405ABM -20100405ABM -20021204ABA
25						
26	NEW	HARRISONBURG VA	51.9	APP	BDCCDTL	-20061030AAB
32	WVIR-TV	CHARLOTTESVILLE VA	52.0	LIC	BLCDT	-20040908AAE
Prop	osal cause	es no interference				

Analysis of Interference to Affected Station 13

```
Analysis of current record
```

Channel Call City/State Application Ref. No. 28 WAZF-CA WINCHESTER/FRONT ROY VA BLTTL -19940422IK

Stations Potentially Affecting This Station

Chan	Call	City/State	Dist(km)	Status	Applicati	on Ref. No.
21	WVPY	FRONT ROYAL VA	29.3	LIC	BLEDT	-20100209AAB
21	WVPY	FRONT ROYAL VA	29.3	PLN	DTVPLN	-DTVP0767
21	FULK	FRONT ROYAL VA	90.4	APP	BLEDT	-20111219AAX
21	RUCK	FRONT ROYAL VA	82.3	APP	BLEDT	-20111219AAX
21	LURA	FRONT ROYAL VA	76.9	APP	BLEDT	-20111219AAX
21	MAIN	FRONT ROYAL VA	29.3	APP	BLEDT	-20111219AAX
24	WNVC	FAIRFAX VA	89.9	LIC	BLEDT	-20090612ACS
26	WHAG-TV	HAGERSTOWN MD	55.0	LIC	BLCDT	-20090612AFP
27	WETA-TV	WASHINGTON DC	98.7	LIC	BLEDT	-20070727ACJ
28	WFPT	FREDERICK MD	75.0	LIC	BLEDT	-20090330AFA
28	WCPB	SALISBURY MD	241.5	CP	BPEDT	-20080318AAC
28	WCPB	SALISBURY MD	241.5	LIC	BLEDT	-20090209AEM
28	WRDC	DURHAM NC	392.5	LIC	BLCDT	-20090612AID
28	WNBC	NEW YORK NY	392.9	APP	BPCDT	-20080620ADL
28	WVTX-CA	BRIDGEPORT OH	240.6	LIC	BLTTA	-20100322ABR
28	WVTX-CA	BRIDGEPORT OH	240.6	APP	BSTA	-20061222ABQ
28	WUAB	LORAIN OH	386.0	LIC	BLCDT	-20020516AAG
28	w28BF	HARRISONBURG VA	102.9	LIC	BLTT	-19951011IA
29	WMPB	BALTIMORE MD	123.5	LIC	BLEDT	-20090330AEX
30	WNVT	GOLDVEIN VA	89.9	LIC	BLEDT	-20031230AAR
32	WVIR-TV	CHARLOTTESVILLE VA	137.3	LIC	BLCDT	-20040908AAE
35	WDCA	WASHINGTON DC	98.3	LIC	BLCDT	-20070411AAH
35	WDCA	WASHINGTON DC	98.3	CP	BPCDT	-20080620anp
36	WTTG	WASHINGTON DC	98.3	LIC	BLCDT	-20080507AAA
36	WGPT	OAKLAND MD	98.6	LIC	BLEDT	-20110509ACO
42	WMPT	ANNAPOLIS MD	137.0	LIC	BLEDT	-20100813BHC

Proposed station is beyond the site to nearest cell evaluation distance

Analysis of current record DTS STATION Channel Call 21 MAIN FRONT	City/State ROYAL VA	Applica BLED	tion Ref. No r -2011	o. 1219AAX	
Stations Potentially A	ffecting This	Station			
Chan Call City/State 20 wwCw LYNCHBURG VA 21 wBOC-TV SALISBURY MD 21 wBNS-TV COLUMBUS OH 21 wBNS-TV COLUMBUS OH 21 wHP-TV HARRISBURG P 21 wHP-TV HARRISBURG P 22 wRIC-TV PETERSBURG V	Δ	st(km) Status 214.8 LIC 238.4 LIC 418.3 LIC 418.3 APP 198.4 LIC 198.4 CP 173.0 LIC	BLCDT BLCDT BLCDT BPCDT BLCDT	-20021025ABK -20080620ANA -20090615ADI	
Total scenarios = 2					
Result key: 5 Scenario 1 Affected Before Analysis	station	14			
Results for: 21A VA FRONT R HAAT 175.0 m, ATV ERP		BLEDT 20)111219AAX	APP	
within Noise Limited Con not affected by terrain lost to NTSC IX lost to additional IX by lost to ATV IX only lost to all IX	tour 1457 losses 1240 ATV 162 162	2233 2045 0 2272 92 2272 92	18.1 51.0		
Potential Interfering Stat	ions Included	l in above Sco	enario 1	L	
	BLCDT 20 BLCDT 20 BLCDT 20				
Result key: 6 Scenario 2 Affected Before Analysis	station	14			
Results for: 21A VA FRONT R HAAT 175.0 m, ATV ERP	OYAL 0.0 kw POPULA)111219AAX (sq km)	APP	
within Noise Limited Con not affected by terrain lost to NTSC IX lost to additional IX by lost to ATV IX only lost to all IX	tour 1457 losses 1240 ATV 169 169	7284 2412 9233 2045 0 9452 108	18.1 51.0 0.0 37.7 37.7		
Potential Interfering Stat	ions Included	l in above Sco	enario 2	2	
21A MD SALISBURY 21A PA HARRISBURG 22A VA PETERSBURG	BPCDT 20	090618ABK L: 0100325ABG CI 0090209ABZ L:	o -		
#######################################					

FINISHED FINISHED FINISHED FINISHED FINISHED

Summary Study

Percent allowed new interference: 0.500
Percent allowed new interference to non Class A LPTV: 2.000
Census data selected 2000
Data Base Selected
./data_files/pt_tvdb.sff
TV INTERFERENCE and SPACING ANALYSIS PROGRAM

Date: 12-13-2011 Time: 14:09:19

Record Selected for Analysis (Record is a DTS)

-20111219AAX FRONT ROYAL VA US HAAT 00175 m RCAMSL 00680 m Channel 21 ERP 0.010 kW Latitude 038-36-31 Longitude 0078-54-07 Status APP Zone 1 Border Site number: 01 Dir Antenna Make CDB Model 0000000107752 Beam tilt N Ref Azimuth 000.0 Elevation Antenna Pattern ID: 120 Last update 00000000 Cutoff date 00000000 Docket Applicant SHENANDOAH VALLEY EDUCATIONAL TELEVI

RUCK BLEDT -20111219AAX FRONT ROYAL VA US Channel 21 ERP 0.039 kW HAAT 00646 m RCAMSL 01190 m Latitude 038-28-43 Longitude 0078-24-58 Status APP zone 1 Border Site number: 02 Dir Antenna Make CDB Model 0000000107752 Beam tilt N Ref Azimuth 170.0 Elevation Antenna Pattern ID: 120 Last update 00000000 Cutoff date 00000000 Docket Comments Applicant SHANANDOAH VALLEY EDUCATIONAL TELEVI

-20111219AAX BLEDT FRONT ROYAL VA US Channel 21 ERP 0.100 kW HAAT 00600 m RCAMSL 00975 m Latitude 038-36-05 Longitude 0078-37-58 Status APP zone 1 Border Site number: 03 Dir Antenna Make CDB Model 0000000107752 Beam tilt N Ref Azimuth 100.0 Elevation Antenna Pattern ID: 120 Last update 00000000 Cutoff date 00000000 Docket Comments Applicant SHENANDOAH VALLEY EDUCATIONAL TELEVI

-20111219AAX FRONT ROYAL **BLEDT** VA US Channel 21 ERP 100.0 kW HAAT 00400 m RCAMSL 00668 m Latitude 038-57-36 Longitude 0078-19-52 Status APP zone 1 Border Site number: 04 Dir Antenna Make CDB Model 0000000089962 Beam tilt Y Ref Azimuth 000.0 Elevation Antenna Pattern ID: 121 Last update 00000000 Cutoff date 00000000 Docket Comments Applicant SHENANDOAH VALLEY EDUCATIONAL TELEVI

Cell Size for Service Analysis 2.0 km/side

Distance Increments for Longley-Rice Analysis 1.00 km

Facility (site # 01) meets maximum height/power limits

Facility (site # 02) meets maximum height/power limits

Facility (site # 03) meets maximum height/power limits

Facility (site # 04) meets maximum height/power limits

Site number	1		
Azimuth	ERP	HAAT	41.0 dBu F(50,90)
(Deg)	(kw)	(m)	(km)
0.0	0.010	120.7	18.7
45.0	0.000	251.2	12.4
90.0	0.000	318.7	9.2
135.0	0.000	286.4	8.8
180.0	0.000	241.3	8.2
225.0	0.000	82.4	5.0
270.0	0.000	33.0	3.2
315.0	0.000	92.4	7.8

Database HAAT does not agree with computed HAAT Database HAAT: 175 Computed HAAT: 178

Site number	2		
Azimuth	ERP	HAAT	41.0 dBu F(50,90)
(Deg)	(kw)	(m)	(km)
0.0	0.000	511.1	11.5
45.0	0.000	688.0	12.6
90.0	0.000	851.0	14.1
135.0	0.009	847.5	39.5
180.0	0.035	703.3	45.2
225.0	0.000	339.6	9.4
270.0	0.000	593.2	12.0
315.0	0.000	626.7	12.1

Database HAAT does not agree with computed HAAT Database HAAT: 646 Computed HAAT: 645

90)

Database HAAT does not agree with computed HAAT Database HAAT: 600 Computed HAAT: 625

4		
ERP	HAAT	41.0 dBu F(50,90)
(kw)	(m)	(km)
99.557	467.0	91.0
98.594	473.1	91.4
51.662	497.5	88.2
2.512	403.9	63.6
7.103	343.7	66.3
74.140	236.2	71.7
99.231	405.0	87.6
99.123	385.3	86.4
	ERP (kW) 99.557 98.594 51.662 2.512 7.103 74.140 99.231	ERP (kw) (m) 99.557 467.0 98.594 473.1 51.662 497.5 2.512 403.9 7.103 343.7 74.140 236.2 99.231 405.0

Database HAAT does not agree with computed HAAT Database HAAT: 400 Computed HAAT:

Evaluation toward Class A Stations from site # 01

No Spacing violations or contour overlap to Class A stations from site # 01

Evaluation toward Class A Stations from site # 02

No Spacing violations or contour overlap to Class A stations from site # 02

Evaluation toward Class A Stations from site # 03

No Spacing violations or contour overlap to Class A stations from site # 03

Evaluation toward Class A Stations from site # 04

No Spacing violations or contour overlap to Class A stations from site # 04

Class A Evaluation Complete

SPACING VIOLATION FOUND BETWEEN STATION

FULK 21 FRONT ROYAL VA BLEDT 20111219AAX Site # 01

and station

SHORT TO: WVPY 21 FRONT ROYAL VA BLEDT 20100209AAB

038-57-36 0078-19-52

Req. separation 196.3 Actual separation 63.1 Short 133.2 km

SHORT TO: WVPY 21 FRONT ROYAL VA DTVPLN DTVP0767 38 -57-36 78 -19-52

Req. separation 196.3 Actual separation 63.1 Short 133.2 km

LANDMOBILE SPACING VIOLATIONS FOUND

NONE from Site # 01

SPACING VIOLATION FOUND BETWEEN STATION

21 FRONT ROYAL 20111219AAX Site # 02 RUCK VA BLEDT

and station

SHORT TO: WVPY 21 FRONT ROYAL VA BLEDT 20100209AAB

038-57-36 0078-19-52

Req. separation 196.3 Actual separation 53.9 Short 142.4 km

SHORT TO: WVPY 21 38 -57-36 78 -19-52 21 FRONT ROYAL VA DTVPLN DTVP0767

Req. separation 196.3 Actual separation 53.9 Short 142.4 km

LANDMOBILE SPACING VIOLATIONS FOUND

NONE from Site # 02

SPACING VIOLATION FOUND BETWEEN STATION

21 FRONT ROYAL 20111219AAX Site # 03 LURA VA BLEDT

and station

SHORT TO: WVPY 21 FRONT ROYAL VA BLEDT 20100209AAB

038-57-36 0078-19-52

Req. separation 196.3 Actual separation 47.7 Short 148.6 km

SHORT TO: WVPY 21 38 -57-36 78 -19-52 21 FRONT ROYAL VA DTVPLN DTVP0767

Req. separation 196.3 Actual separation 47.7 Short 148.6 km

LANDMOBILE SPACING VIOLATIONS FOUND

NONE from Site # 03

SPACING VIOLATION FOUND BETWEEN STATION

MAIN 21 FRONT ROYAL VA BLEDT 20111219AAX Site # 04

and station

SHORT TO: WVPY 21 FRONT ROYAL VA BLEDT 20100209AAB

038-57-36 0078-19-52

Req. separation 196.3 Actual separation 0.0 Short 196.3 km

SHORT TO: WVPY 21 FRONT ROYAL VA DTVPLN DTVP0767 38 -57-36 78 -19-52

Req. separation 196.3 Actual separation 0.0 Short 196.3 km

LANDMOBILE SPACING VIOLATIONS FOUND

NONE from Site # 04

Checks to Site Number 01

Proposed facility OK to FCC Monitoring Stations

Proposed facility within West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Proposed station is OK toward AM broadcast stations

Checks to Site Number 02

Proposed facility OK to FCC Monitoring Stations

Proposed facility OK toward West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Proposed station is OK toward AM broadcast stations

Checks to Site Number 03

Proposed facility OK to FCC Monitoring Stations

Proposed facility within West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Proposed station is OK toward AM broadcast stations

Checks to Site Number 04

Proposed facility OK to FCC Monitoring Stations

Proposed facility OK toward West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Stations Potentially Affected by Proposed Station

Proposed station is OK toward AM broadcast stations

Start of Interference Analysis

	Prop	osed Station		
Channel	Call Call	City/State	ARN	20111219AAX
21	FULK	FRONT ROYAL VA	BLEDT	20111219AAX

Chan	Call	City/State	Dist(km)	Status	Applicati	on Ref. No.
20	WWLM-CA	WASHINGTON PA	209.7	CP	BDFCDTA	20081208AAK
20	WWCW	LYNCHBURG VA	156.8	LIC	BLCDT	20090619ABM
21	WUPX-TV	MOREHEAD KY	420.2	LIC	BLCDT	20040901ACJ
21	WBOC-TV	SALISBURY MD	283.4	LIC	BLCDT	20090618ABK
21	W21CK-D	CHARLOTTE NC	417.6	LIC	BLDTA	20110706AAV
21	WBNS-TV	COLUMBUS OH	385.8	LIC	BLCDT	20021025ABK
21	WBNS-TV	COLUMBUS OH	385.8	APP	BPCDT	20080620ANA
21	WHP-TV	HARRISBURG PA	260.1	LIC	BLCDT	20090615ADL
21	WHP-TV	HARRISBURG PA	260.1	CP	BPCDT	20100325ABG
22	WRIC-TV	PETERSBURG VA	166.7	LIC	BLCDT	20090209ABZ
24	WAZH-CA	HARRISONBURG VA	29.1	LIC	BLTTL	19960823JC
25	WAZM-CA	STAUNTON-WAYNESBORO VA	26.5	LIC	BLTTL	20011107ABW
28	WAZF-CA	WINCHESTER/FRONT ROY VA	90.4	LIC	BLTTL	19940422IK

Study of this proposal found the following interference problem(s): NONE.

WVPY DTS System - 41 dBu Noise Limited Contours Shown

WVPY-D

BLEDT20100209AAB Latitude: 38-57-36 N Longitude: 078-19-52 W ERP: 100.00 kW Channel: 21

Frequency: 515.0 MHz AMSL Height: 668.0 m

Luray

Latitude: 38-36-05 N Longitude: 078-37-58 W ERP: 0.098 kW Channel: 21

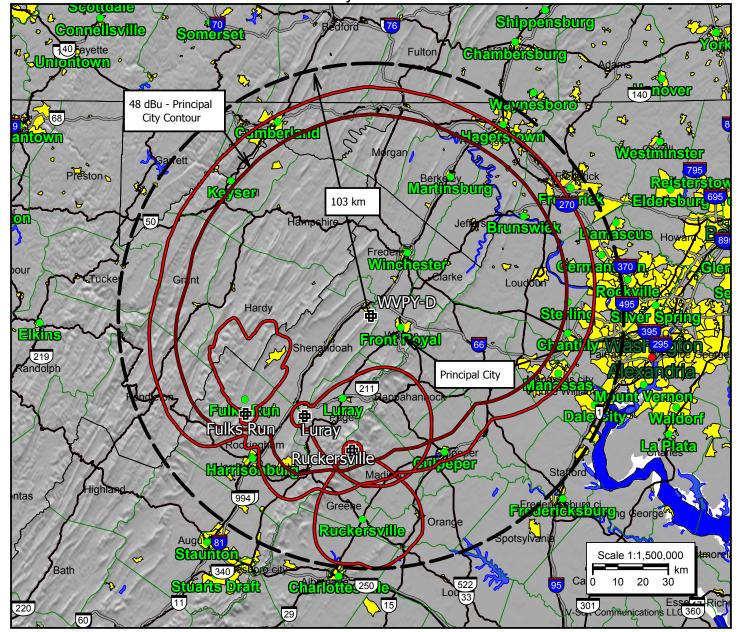
Frequency: 515.0 MHz AMSL Height: 958.0 m

Ruckersville

Latitude: 38-28-43 N Longitude: 078-24-58 W

ERP: 0.039 kW Channel: 21

Frequency: 515.0 MHz AMSL Height: 1190.0 m


Fulks Run

Latitude: 38-36-31 N Longitude: 078-54-07 W ERP: 0.10 kW

Channel: 21

Frequency: 515.0 MHz AMSL Height: 680.0 m

R.F. RADIATION COMPLIANCE STATEMENT Channel 21 – DTS System Shenandoah Valley Educational TV Corp

December 22, 2011

The WVPY-TV main transmitter site is located atop Signal Knob. The station has been licensed at this site since 1999 and is therefore exempt from further environmental considerations. There are two other low power TV transmitters at this site, WHSV-TV and WAZW-LP. The site, fenced, gated and locked has warning signs posted making it a "controlled environment."

WVPY-TV

This station is currently licensed on channel 21 by the Commission at 100 kW ERP from an antenna mounted at 26 meters above the ground. Based on the formulas expressed in the OET Bulletin, No. 65, August 1997, "Evaluating Compliance with F.C.C. Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", published by the Federal Communication Commission's Office of Science and Engineering, at head height when assuming a vertical elevation field of 0.1 toward the nadir, this station produces a power density of 58.0 microwatts per square centimeter, which is 3.4 percent of the 1,716.7 microwatts per square centimeter maximum for the frequency in use.

WHSV-TV operates on channel 42 with an ERP of 1 kW from an antenna height of 27 meters above ground. Using the formulas in OET-65, it can be shown that this station produces 0.535 microwatts per square centimeter at head height which is 0.25 percent of the maximum of 2,136.7 microwatts per square centimeter.

WAZL-LP operates on channel 46 with an ERP of 15 kW from an antenna 20 meters above the ground. Using the formulas of OET-65 this station is shown to contribute 15.5 microwatts per square centimeter at head height which is 0.7 percent of the maximum of 2,216.7 microwatts per square centimeter.

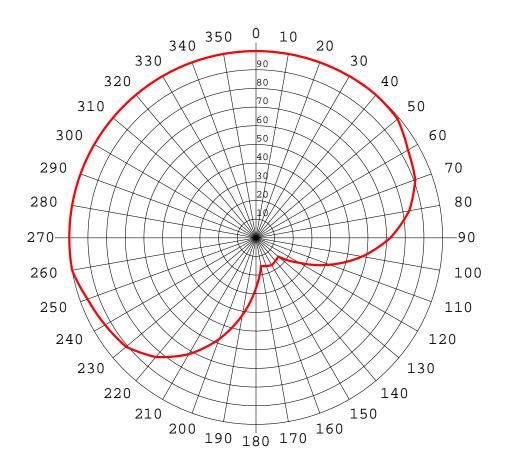
The applicant protects workers on the tower by either reducing ERP or terminating transmission. An agreement is in effect with the users at this location to reduce power or to terminate operations to protect workers from exposure in excess of the Commission's standard.

Fulks Run:

This DTS transmitter uses the applicant's previous TV translator site which was constructed prior to 2001. The transmitter employs a high gain antenna from a height above ground of 40 meters. OET-65 calculations show that this high gain antenna produces 0.023 microwatts per square centimeter at head height. This amounts to only 0.0013 percent of the maximum for a controlled area and 0.007 percent for an uncontrolled area. Consequently, no further emissions analysis was deemed necessary.

Luray:

This DTS transmitter uses the applicant's previous translator site which was constructed prior to March 2001. The transmitter employs a high gain antenna with a height above

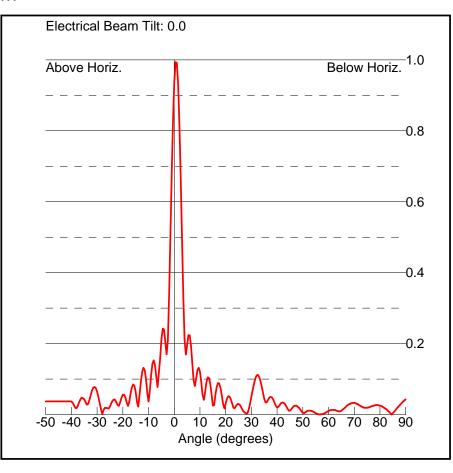

ground of 59 meters. OET-65 calculations show that this antenna produces 0.01 microwatts per square centimeter. This amounts to only 0.0005 percent of the maximum for a controlled area and 0.003 percent for an uncontrolled area. Consequently, no further analysis was deemed necessary.

Ruckersville:

This DTS transmitter uses the applicant's previous translator site built prior to March 2001. The transmitter employs a high gain antenna with a height above ground of 16 meters. OET-65 calculations show that this antenna produces 0.0171 microwatts per square centimeter. This amounts to 0.01 percent of the maximum for a controlled area and 0.05 percent for an uncontrolled area. Consequently, no further analysis was deemed necessary.

Therefore, all of the DTS transmitters sites comply with the FCC's maximum R.F. emissions standard with regard to protection of workers and the general public from non- ionization radio frequency radiation.

Doug Vernier
Telecommunications Consultants

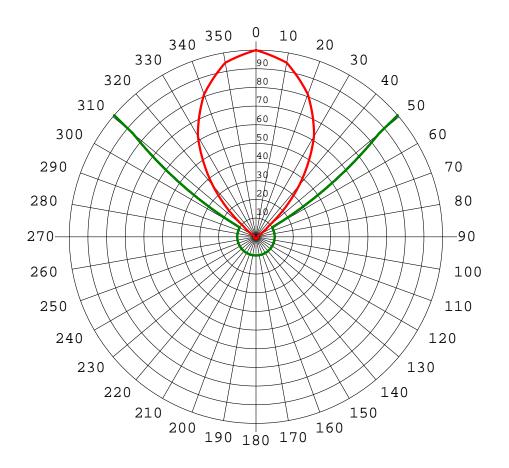

Azi	Rel	dBk	kW	dВ	Az	i
0	1.000	20.00	100.0	0.00	18	0 0.
10	1.000	20.00	100.0	0.00	19	0 0.
20	1.000	20.00	100.0	0.00	20	0 0.
30	1.000	20.00	100.0	0.00	21	0 0.
40	1.000	20.00	100.0	0.00	22	0 0.
50	0.990	19.91	98.0	-0.09	23	0 0.
60	0.940	19.46	88.4	-0.54	24	0 0.
70	0.908	19.16	82.4	-0.84	25	0 0.
80	0.834	18.42	69.6	-1.58	26	0 1.
90	0.720	17.15	51.8	-2.85	27	0 1.
100	0.578	15.24	33.4	-4.76	28	0 1.
110	0.421	12.49	17.7	-7.51	29	0 1.
120	0.268	8.56	7.2	-11.44	30	0 1.
130	0.156	3.86	2.4	-16.14	31	0 1.
140	0.162	4.19	2.6	-15.81	32	0 1.
150	0.169	4.56	2.9	-15.44	33	0 1.
160	0.161	4.14	2.6	-15.86	34	0 1.
170	0.153	3.69	2.3	-16.31	35	0 1.

Rel	dBk	kW	dB
0.268	8.56	7.2	-11.44
0.421	12.49	17.7	-7.51
0.578	15.24	33.4	-4.76
0.720	17.15	51.8	-2.85
0.834	18.42	69.6	-1.58
0.908	19.16	82.4	-0.84
0.933	19.40	87.0	-0.60
0.960	19.65	92.2	-0.35
1.000	20.00	100.0	0.00
1.000	20.00	100.0	0.00
1.000	20.00	100.0	0.00
1.000	20.00	100.0	0.00
1.000	20.00	100.0	0.00
1.000	20.00	100.0	0.00
1.000	20.00	100.0	0.00
1.000	20.00	100.0	0.00
1.000	20.00	100.0	0.00
1.000	20.00	100.0	0.00
	0.268 0.421 0.578 0.720 0.834 0.908 0.933 0.960 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.268 8.56 0.421 12.49 0.578 15.24 0.720 17.15 0.834 18.42 0.908 19.16 0.933 19.40 0.960 19.65 1.000 20.00 1.000 20.00	0.421 12.49 17.7 0.578 15.24 33.4 0.720 17.15 51.8 0.834 18.42 69.6 0.908 19.16 82.4 0.933 19.40 87.0 0.960 19.65 92.2 1.000 20.00 100.0 1.000 20.00 100.0 1.000 20.00 100.0 1.000 20.00 100.0 1.000 20.00 100.0 1.000 20.00 100.0 1.000 20.00 100.0 1.000 20.00 100.0 1.000 20.00 100.0

Rotation Angle = 0

WVPY - Vertical Elevation Pattern

Angle (deg)	Relative Field
-40.0	0.037
-39.5	0.033
-39.0	0.026
-38.5	0.019
-38.0	0.018
-37.5	0.025
-37.0	0.035
-36.5	0.043
-36.0	0.048
-35.0	0.043
-34.5	0.035
-34.0	0.028
-33.5	0.03
-33.0	0.041
-32.5	0.055
-32.0	0.068
-31.5	0.076
-31.0	0.078
-30.5	0.074
-30.0	0.064
-29.5	0.049
-29.0	0.032
-28.5	0.015
-28.0	0.001
-27.5	0.013
-27.0	0.019
-26.0	0.018
-25.5	0.017
-25.0	0.023
-24.5	0.032
-24.0	0.039
-23.5	0.043
-23.0	0.041
-22.5	0.034
-22.0	0.026
-21.5	0.025
-21.0	0.036
-20.5	0.048
-20.0	0.056
-19.5	0.056
-19.0	0.048
-18.5	0.034
-18.0	0.024
-17.5	0.036
-17.0	0.059
-16.5	0.077
-16.0	0.085
-15.5	0.081

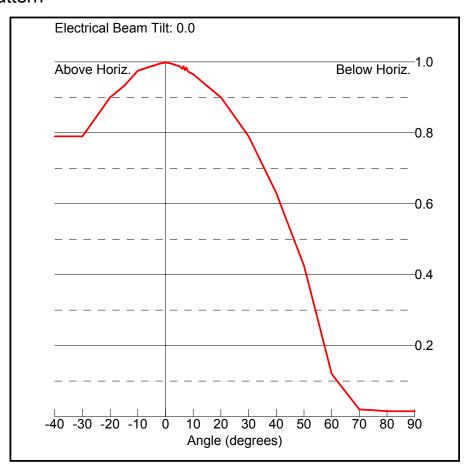

-15.0	0.063
-14.5	0.035
-14.0	0.022
-13.5	0.056
-13.0	0.092
-12.5	0.12
-12.0	0.132
-11.5	0.125
-11.0	0.1
-10.5	0.062
-10.0	0.036
-9.5	0.068
-9.0	0.112
-8.5	0.143
-8.0	0.153
-7.5	0.139
-7.0	0.106
-6.5	0.077
-5.5	0.158
-5.0	0.212
-4.5	0.242
-4.0	0.24

-3.5	0.205	22.5	0.031
-3.0	0.169	23.0	0.019
-2.5	0.209	23.5	0.018
-2.0	0.34	24.0	0.024
-1.5	0.508	24.5	0.029
-1.0	0.679	25.0	0.03
-0.5	0.828	25.5	0.027
0.0	0.938	26.0	0.021
0.5	0.994	26.5	0.013
1.0	0.991	27.0	0.008
1.5	0.929	27.5	0.005
2.0	0.816	28.0	0.003
2.5	0.666	28.5	0.004
3.0	0.498	29.0	0.016
3.5	0.335	29.5	0.032
4.0	0.21	30.0	0.051
4.5	0.169	30.5	0.07
5.0	0.196	31.0	0.087
5.5	0.224	31.5	0.101
6.0	0.223	32.0	0.11
6.5	0.194	32.5	0.112
7.0	0.145	33.0	0.106
7.5	0.097	33.5	0.095
8.0	0.08	34.0	0.079
8.5	0.101	34.5	0.061
9.0	0.125	35.0	0.044
9.5	0.132	35.5	0.034
10.0	0.12	36.0	0.035
10.5	0.091	36.5	0.042
11.0	0.055	37.0	0.048
11.5	0.041	37.5	0.05
12.0	0.064	38.0	0.048
12.5	0.091	38.5	0.042
13.0	0.105	39.0	0.033
13.5	0.103	39.5	0.025
14.0	0.086	40.0	0.02
14.5	0.057	40.5	0.022
15.0	0.025	41.0	0.027
15.5	0.027	41.5	0.032
16.0	0.056	42.0	0.034
16.5	0.078	42.5	0.033
17.0	0.089	43.0	0.03
17.5	0.087	43.5	0.024
18.0	0.074	44.0	0.017
18.5	0.053	44.5	0.011
19.0	0.029	45.0	0.011
19.5	0.017	45.5	0.015
20.0	0.031	46.0	0.02
20.5	0.045	46.5	0.024
21.0	0.052	47.0	0.025
21.5	0.05	47.5	0.025
22.0	0.043	48.0	0.022
			-
100/0044			

N. Lat. = 385736.0 W. Lng. = 781952.0 HAAT and Distance to Contour, FCC OET,TV 3.2 - 16.1, 130 pts - USGS 03 SEC

WVPY- Azi.	TV Main AV EL	- Dista HAAT	nce to Conto	our – Dep dBk	oression Field	Angle DAng	VFld	D-kW	%Max	D-dBk	41-F9
000	200.9	467.1	100.0000	20.00	1.000	0.599	0.998	99.5899	99.8	20.00	90.96
010	211.4	456.6	100.0000	20.00	1.000	0.592	0.998	99.5358	99.8	20.00	90.29
020	213.5	454.5	100.0000	20.00	1.000	0.591	0.998	99.5247	99.8	20.00	90.16
030	213.8	454.2	100.0000	20.00	1.000	0.590	0.998	99.5232	99.8	20.00	90.14
040	200.1	468.0	100.0000	20.00	1.000	0.599	0.998	99.5941	99.8	20.00	91.01
050	189.8	478.2	98.0100	19.91	0.990	0.606	0.998	97.6407	99.8	19.91	91.54
060	183.4	484.6	88.3600	19.46	0.940	0.610	0.998	88.0414	99.8	19.46	91.19
070	176.1	491.9	82.4464	19.16	0.908	0.614	0.998	82.1642	99.8	19.16	91.16
080	173.5	494.5	69.5556	18.42	0.834	0.616	0.998	69.3220	99.8	18.42	90.05
090 100 110	170.6 180.0 189.7	497.4 488.0 478.3	51.8400 33.4084	17.15 15.24 12.49	0.720 0.578 0.421	0.618 0.612 0.606	0.998 0.998 0.998	51.6697 33.2908 17.6574	99.8 99.8 99.8	17.15 15.24 12.49	88.06 84.39 79.75
120 130	210.9 268.5	457.1 399.5	17.7241 7.1824 2.4336	8.56 3.86	0.268 0.156	0.592 0.554	0.998 0.996	7.1492 2.4149	99.8 99.6	8.56 3.86	73.03 63.25
140	250.1	417.9	2.6244	4.19	0.162	0.566	0.997	2.6068	99.7	4.19	64.64
150	250.0	418.0	2.8561	4.56	0.169	0.566	0.997	2.8370	99.7	4.56	65.15
160	251.3	416.7	2.5921	4.14	0.161	0.565	0.997	2.5746	99.7	4.14	64.51
170	269.7	398.3	2.3409	3.69	0.153	0.553	0.996	2.3227	99.6	3.69	62.98
180	325.7	342.3	7.1824	8.56	0.268	0.513	0.995	7.1036	99.5	8.56	66.17
190	324.5	343.5	17.7241	12.49	0.421	0.513	0.995	17.5309	99.5	12.49	71.48
200	330.8	337.2	33.4084	15.24	0.578	0.509	0.994	33.0317	99.4	15.24	74.91
210	315.0	353.0	51.8400	17.15	0.720	0.520	0.995	51.3041	99.5	17.15	79.28
220	452.6	215.4	69.5556	18.42	0.834	0.407	0.987	67.8216	98.7	18.42	69.45
230	341.9	326.1	82.4464	19.16	0.908	0.500	0.994	81.4615	99.4	19.16	79.72
240	226.4	441.6	87.0489	19.40	0.933	0.582	0.997	86.5765	99.7	19.40	88.44
250	223.6	444.4	92.1600	19.65	0.960	0.584	0.997	91.6738	99.7	19.65	88.99
260	234.2	433.8	100.0000	20.00	1.000	0.577	0.997	99.4162	99.7	20.00	88.99
270	264.0	404.0	100.0000	20.00	1.000	0.557	0.996	99.2555	99.6	20.00	87.43
280	301.8	366.2	100.0000	20.00	1.000	0.530	0.995	99.0430	99.5	20.00	84.92
290	289.0	379.0	100.0000	20.00	1.000	0.539	0.996	99.1162	99.6	20.00	85.91
300	287.8	380.2	100.0000	20.00	1.000	0.540	0.996	99.1228	99.6	20.00	85.99
310	290.7	377.3	100.0000	20.00	1.000	0.538	0.996	99.1061	99.6	20.00	85.78
320	278.0	390.0	100.0000	20.00	1.000	0.547	0.996	99.1781	99.6	20.00	86.63
330	261.2	406.8	100.0000	20.00	1.000	0.559	0.996	99.2711	99.6	20.00	87.59
340	247.9	420.1	100.0000	20.00	1.000	0.568	0.997	99.3429	99.7	20.00	88.28
350	221.8	446.2	100.0000	20.00	1.000	0.585	0.997	99.4815	99.7	20.00	89.67

Ave El= 250.56 M HAAT= 417.44 M AMSL= 668 M



Azi	Rel	dBk	kW	dB	Azi	Rel	dBk	kW	dB
0	1.000	-10.00	0.100	0.00	180	0.010	-50.00	0.000	-40.00
10	0.947	-10.47	0.090	-0.47	190	0.010	-50.00	0.000	-40.00
20	0.812	-11.81	0.066	-1.81	200	0.010	-50.00	0.000	-40.00
30	0.622	-14.12	0.039	-4.12	210	0.010	-50.00	0.000	-40.00
40	0.361	-18.85	0.013	-8.85	220	0.010	-50.00	0.000	-40.00
50	0.086	-31.31	0.001	-21.31	230	0.010	-50.00	0.000	-40.00
60	0.010	-50.00	0.000	-40.00	240	0.010	-50.00	0.000	-40.00
70	0.010	-50.00	0.000	-40.00	250	0.010	-50.00	0.000	-40.00
80	0.010	-50.00	0.000	-40.00	260	0.010	-50.00	0.000	-40.00
90	0.010	-50.00	0.000	-40.00	270	0.010	-50.00	0.000	-40.00
100	0.010	-50.00	0.000	-40.00	280	0.010	-50.00	0.000	-40.00
110	0.010	-50.00	0.000	-40.00	290	0.010	-50.00	0.000	-40.00
120	0.010	-50.00	0.000	-40.00	300	0.010	-50.00	0.000	-40.00
130	0.010	-50.00	0.000	-40.00	310	0.086	-31.31	0.001	-21.31
140	0.010	-50.00	0.000	-40.00	320	0.361	-18.85	0.013	-8.85
150	0.010	-50.00	0.000	-40.00	330	0.622	-14.12	0.039	-4.12
160	0.010	-50.00	0.000	-40.00	340	0.812	-11.81	0.066	-1.81
170	0.010	-50.00	0.000	-40.00	350	0.947	-10.47	0.090	-0.47

Rotation Angle = 0

Fulks Run Vertical Elevation Pattern

Angle (deg)	Relative Field
-30.0	0.79
-25.0	0.845
-20.0	0.9
-15.0	0.932
-10.0	0.975
-5.0	0.988
-4.5	0.989
-4.0	0.99
-3.5	0.991
-3.0	0.993
-2.5	0.994
-2.0	0.995
-1.5	0.996
-1.0	0.997
-0.5	0.997
0.0	1.0
0.5	0.997
1.0	0.997
1.5	0.996
2.5	0.994
3.0	0.993
3.5	0.991
4.0	0.99
4.5	0.989
5.0	0.988
5.5	0.984
6.0	0.98
6.5	0.988
7.0	0.976
7.5	0.984 0.973
8.0 8.5	0.973 0.971
9.0	0.969
9.5	0.967
10.0	0.965
15.0	0.932
20.0	0.9
25.0	0.845
30.0	0.79
35.0	0.71
40.0	0.63
45.0	0.527
50.0	0.425
55.0	0.273
60.0	0.12
65.0	0.07
70.0	0.02
75.0	0.018

80.0	0.015
85.0	0.015
90.0	0.015

CL-1469B

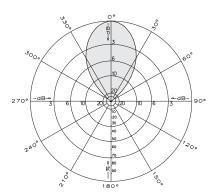
UHF-TV LOG-PERIODIC ANTENNA 8 dBd gain 470–862 MHz (Channels 14–69*)

The Kathrein Scala Division CL-1469B is a ruggedly built, linearly polarized log-periodic antenna designed for professional UHF-TV transmit and receive applications.

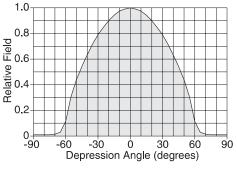
Like all Kathrein Scala Division antennas, the CL-1469B is made of the finest materials using state of the art electrical and mechanical designs resulting in superior performance and long service life. The rugged fiberglass radome protects the antenna from icing and assures stable pattern and gain performance under adverse environmental conditions.

The CL-1469B may be used stand alone or in arrays for higher gain, increased side-lobe suppression, or custom azimuth patterns.

*The CL-1469B covers all 6, 7, and 8 MHz UHF-TV channels worldwide (bands IV/V).


Specifications:

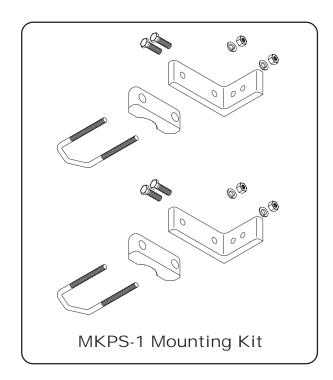
Frequency range	470-862 MHz (broadband)*
Gain	8 dBd
Power gain	6.31
Impedance	50 or 75 ohms
VSWR	< 1.5:1
Polarization	Horizontal or vertical
Front-to-back ratio	>35 dB
Maximum input power	100 watts, type "N" 75 ohm connector 250 watts, type "N" 50 ohm connector
Azimuth pattern	52 degrees (half-power)
Elevation pattern	72 degrees (half-power)
Connector	N female (50 or 75 ohms)
Weight	22 lb (10 kg)
Dimensions	29 x 17 x 12 inches (737 x 432 x 305 mm)
Equivalent flat plate area	2.78 ft ² (.258 m ²)
Wind survival rating*	100 mph (160 kph)
Shipping dimensions	31 x 20 x 14.5 inches (787 x 508 x 368 mm)
Shipping weight	28.0 lb (12.7 kg)
Mounting	Mounting kits available for masts of 2.375 to 4.5 inch (60 to 114 mm) OD.


See reverse for order information.

(Shown horizontally polarized)

Azimuth pattern (E-plane)

Elevation pattern (H-plane)



^{*}Mechanical design is based on environmental conditions as stipulated in EIA-222-F (June 1996) and/or ETS 300 019-1-4 which include the static mechanical load imposed on an antenna by wind at maximum velocity. See the Engineering Section of the catalog for further details.

CL-1469B

UHF-TV LOG-PERIODIC ANTENNA 8 dBd gain 470–862 MHz (Channels 14–69*)

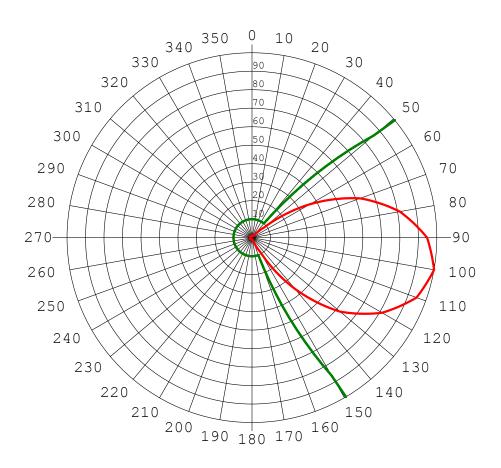
29 inches (737 mm) 17 inches (432 mm) 12 inches (305 mm)

(Shown horizontally polarized)

Mounting Options:

Model	Description
MKPS-1 (shown)	Mounting Kit for 2.375 inch (60 mm) OD mast.
MKPS-2	Mounting Kit for 2.875 inch (73 mm) OD mast.
MKPS-3	Mounting Kit for 3.5 inch (89 mm) OD mast.
MKPS-4	Mounting Kit for 4 inch (102 mm) OD mast.
MKPS-5	Mounting Kit for 4.5 inch (114 mm) OD mast.

Order Information:

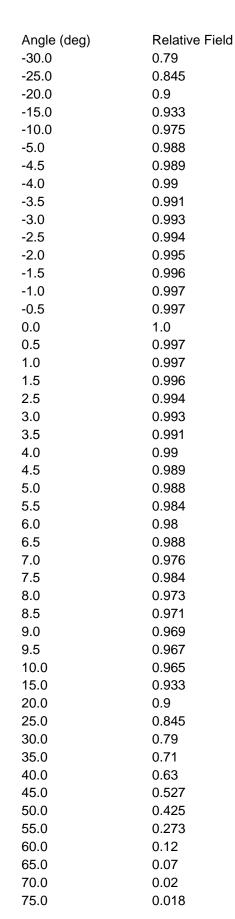

Model	Description
CL-1469B/50	Antenna with 50 Ω N connector
CL-1469B/75	Antenna with 75 Ω N connector
Note:	Requires mounting kit at additional cost (see listing above).

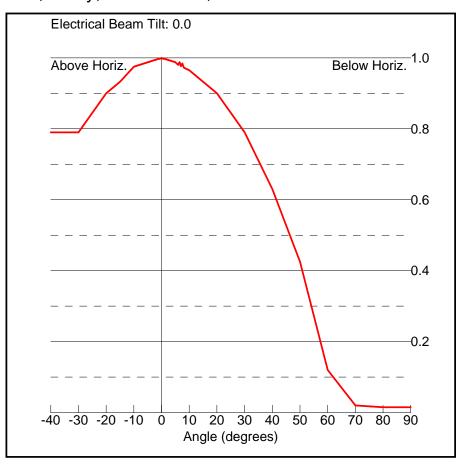
N. Lat. = 383631.0 W. Lng. = 785407.0 HAAT and Distance to Contour, FCC OET, TV 3. 2 - 16.1, 130 pts - USGS 03 SEC

Ful ks Azi .	Run - AV EL	Di stance HAAT	to Contour ERP kW	- Depres dBk	ssion An Field	gl e DAng	VFI d	D-kW	%Max D-dBk	41-F9
000	560. 4	119. 6	0. 1000	-10.00	1. 000	0. 303	0. 998	0. 0996	99.8 -10.00	30. 77
010	454. 6	225. 4	0. 0897	-10.47	0. 947	0. 416	0. 998	0. 0892	99.8 -10.47	36. 71
020	445. 5	234. 5	0. 0659	-11.81	0. 812	0. 424	0. 997	0. 0656	99.7 -11.81	35. 56
030	415. 4	264. 6	0. 0387	-14.12	0. 622	0. 451	0. 997	0. 0385	99.7 -14.12	34. 14
040	495. 8	184. 2	0. 0130	-18. 85	0. 361	0. 376	0. 998	0. 0130	99. 8 -18. 85	24. 33
050	405. 1	274. 9	0. 0007	-31. 31	0. 086	0. 459	0. 997	0. 0007	99. 7 -31. 31	14. 79
060	366. 8	313. 2	0. 0000	-50. 00	0. 010	0. 490	0. 997	0. 0000	99. 7 -50. 00	4. 48
070	345. 2	334. 8	0. 0000	-50. 00	0. 010	0. 507	0. 997	0. 0000	99. 7 -50. 00	4. 58
080	346. 1	333. 9	0. 0000	-50. 00	0. 010	0. 506	0. 997	0. 0000	99. 7 -50. 00	4. 57
090	361. 4	318. 6	0. 0000	-50. 00	0. 010	0. 494	0. 997	0. 0000	99. 7 -50. 00	4. 51
100	369. 5	310. 5	0. 0000	-50. 00	0. 010	0. 488	0. 997	0. 0000	99. 7 -50. 00	4. 47
110	372. 4	307. 6	0. 0000	-50. 00	0. 010	0. 486	0. 997	0. 0000	99. 7 -50. 00	4. 46
120	379. 4	300. 6	0. 0000	-50. 00	0. 010	0. 480	0. 997	0. 0000	99. 7 -50. 00	4. 43
130	389. 6	290. 4	0. 0000	-50. 00	0. 010	0. 472	0. 997	0.0000	99. 7 -50. 00	4. 38
140	402. 0	278. 0	0. 0000	-50. 00	0. 010	0. 462	0. 997	0.0000	99. 7 -50. 00	4. 32
150	411. 3	268. 7	0. 0000	-50. 00	0. 010	0. 454	0. 997	0.0000	99. 7 -50. 00	4. 27
160	423. 5	256. 5	0. 0000	-50. 00	0. 010	0. 444	0. 997	0.0000	99. 7 -50. 00	4. 20
170	428. 4	251. 6	0. 0000	-50. 00	0. 010	0. 439	0. 997	0. 0000	99. 7 -50. 00	4. 18
180	439. 1	240. 9	0. 0000	-50. 00	0. 010	0. 430	0. 997	0. 0000	99. 7 -50. 00	4. 11
190	467. 6	212. 4	0. 0000	-50. 00	0. 010	0. 404	0. 998	0. 0000	99. 8 -50. 00	3. 93
200	472. 9	207. 1	0. 0000	-50. 00	0. 010	0. 399	0. 998	0. 0000	99.8 -50.00	3. 89
210	492. 6	187. 4	0. 0000	-50. 00	0. 010	0. 379	0. 998	0. 0000	99.8 -50.00	3. 76
220	626. 2	53. 8	0. 0000	-50. 00	0. 010	0. 203	0. 999	0. 0000	99.9 -50.00	2. 34
230	625. 2	54. 8	0. 0000	-50. 00	0. 010	0. 205	0. 999	0.0000	99. 9 -50. 00	2. 36
240	678. 9	1. 1	0. 0000	-50. 00	0. 010	0. 029	1. 000	0.0000	100. 0 -50. 00	1. 71
250	661. 5	18. 5	0. 0000	-50. 00	0. 010	0. 119	0. 999	0.0000	99. 9 -50. 00	1. 71
260	645. 5	34. 5	0. 0000	-50. 00	0. 010	0. 163	0. 999	0.0000	99. 9 -50. 00	1. 85
270	670. 1	9. 9	0. 0000	-50. 00	0. 010	0. 087	0. 999	0. 0000	99. 9 -50. 00	1. 71
280	651. 5	28. 5	0. 0000	-50. 00	0. 010	0. 148	0. 999	0. 0000	99. 9 -50. 00	1. 71
290	604. 6	75. 4	0. 0000	-50. 00	0. 010	0. 241	0. 999	0. 0000	99. 9 -50. 00	2. 66
300	547. 6	132. 4	0. 0000	-50. 00	0. 010	0. 319	0. 998	0. 0000	99. 8 -50. 00	3. 32
310	585. 5	94. 5	0. 0007	-31. 31	0. 086	0. 269	0. 998	0. 0007	99. 8 -31. 31	8. 77
320	600. 1	79. 9	0. 0130	-18. 85	0. 361	0. 248	0. 999	0. 0130	99. 9 -18. 85	16. 19
330	512. 5	167. 5	0. 0387	-14. 12	0. 622	0. 359	0. 998	0. 0385	99. 8 -14. 12	28. 93
340 350	472. 4 431. 7	207. 6 248. 3	0. 0387 0. 0659 0. 0897	-14. 12 -11. 81 -10. 47	0. 822 0. 812 0. 947	0. 359 0. 399 0. 436	0. 998 0. 997	0. 0363 0. 0656 0. 0892	99. 8 -11. 81 99. 7 -10. 47	34. 09 37. 87

Ave EI = 487.72 M HAAT= 192.28 M AMSL= 680 M

Luray - Scala CL-1469




Azi	Rel	dBk	kW	dB
0	0.010	-50.09	0.000	-40.00
10	0.010	-50.09	0.000	-40.00
20	0.010	-50.09	0.000	-40.00
30	0.010	-50.09	0.000	-40.00
40	0.010	-50.09	0.000	-40.00
50	0.086	-31.40	0.001	-21.31
60	0.361	-18.94	0.013	-8.85
70	0.622	-14.21	0.038	-4.12
80	0.812	-11.90	0.065	-1.81
90	0.947	-10.56	0.088	-0.47
100	1.000	-10.09	0.098	0.00
110	0.947	-10.56	0.088	-0.47
120	0.812	-11.90	0.065	-1.81
130	0.622	-14.21	0.038	-4.12
140	0.361	-18.94	0.013	-8.85
150	0.086	-31.40	0.001	-21.31
160	0.010	-50.09	0.000	-40.00
170	0.010	-50.09	0.000	-40.00

Azi	Rel	dBk	kW	dB
180	0.010	-50.09	0.000	-40.00
190	0.010	-50.09	0.000	-40.00
200	0.010	-50.09	0.000	-40.00
210	0.010	-50.09	0.000	-40.00
220	0.010	-50.09	0.000	-40.00
230	0.010	-50.09	0.000	-40.00
240	0.010	-50.09	0.000	-40.00
250	0.010	-50.09	0.000	-40.00
260	0.010	-50.09	0.000	-40.00
270	0.010	-50.09	0.000	-40.00
280	0.010	-50.09	0.000	-40.00
290	0.010	-50.09	0.000	-40.00
300	0.010	-50.09	0.000	-40.00
310	0.010	-50.09	0.000	-40.00
320	0.010	-50.09	0.000	-40.00
330	0.010	-50.09	0.000	-40.00
340	0.010	-50.09	0.000	-40.00
350	0 010	-50 09	0 000	-40 00

Rotation Angle = 0

CL-1469 - Vertical Elevation Pattern, Luray, Ruckersville, Fulks Run

0.015
0.015
0.015

CL-1469B

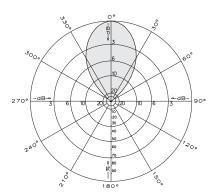
UHF-TV LOG-PERIODIC ANTENNA 8 dBd gain 470–862 MHz (Channels 14–69*)

The Kathrein Scala Division CL-1469B is a ruggedly built, linearly polarized log-periodic antenna designed for professional UHF-TV transmit and receive applications.

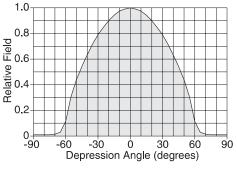
Like all Kathrein Scala Division antennas, the CL-1469B is made of the finest materials using state of the art electrical and mechanical designs resulting in superior performance and long service life. The rugged fiberglass radome protects the antenna from icing and assures stable pattern and gain performance under adverse environmental conditions.

The CL-1469B may be used stand alone or in arrays for higher gain, increased side-lobe suppression, or custom azimuth patterns.

*The CL-1469B covers all 6, 7, and 8 MHz UHF-TV channels worldwide (bands IV/V).


Specifications:

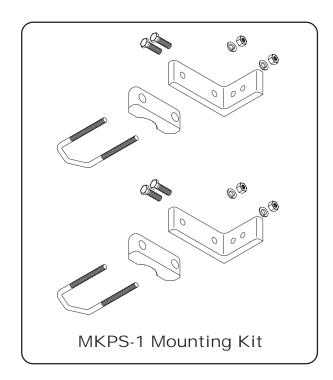
Frequency range	470-862 MHz (broadband)*
Gain	8 dBd
Power gain	6.31
Impedance	50 or 75 ohms
VSWR	< 1.5:1
Polarization	Horizontal or vertical
Front-to-back ratio	>35 dB
Maximum input power	100 watts, type "N" 75 ohm connector 250 watts, type "N" 50 ohm connector
Azimuth pattern	52 degrees (half-power)
Elevation pattern	72 degrees (half-power)
Connector	N female (50 or 75 ohms)
Weight	22 lb (10 kg)
Dimensions	29 x 17 x 12 inches (737 x 432 x 305 mm)
Equivalent flat plate area	2.78 ft ² (.258 m ²)
Wind survival rating*	100 mph (160 kph)
Shipping dimensions	31 x 20 x 14.5 inches (787 x 508 x 368 mm)
Shipping weight	28.0 lb (12.7 kg)
Mounting	Mounting kits available for masts of 2.375 to 4.5 inch (60 to 114 mm) OD.


See reverse for order information.

(Shown horizontally polarized)

Azimuth pattern (E-plane)

Elevation pattern (H-plane)



^{*}Mechanical design is based on environmental conditions as stipulated in EIA-222-F (June 1996) and/or ETS 300 019-1-4 which include the static mechanical load imposed on an antenna by wind at maximum velocity. See the Engineering Section of the catalog for further details.

CL-1469B

UHF-TV LOG-PERIODIC ANTENNA 8 dBd gain 470–862 MHz (Channels 14–69*)

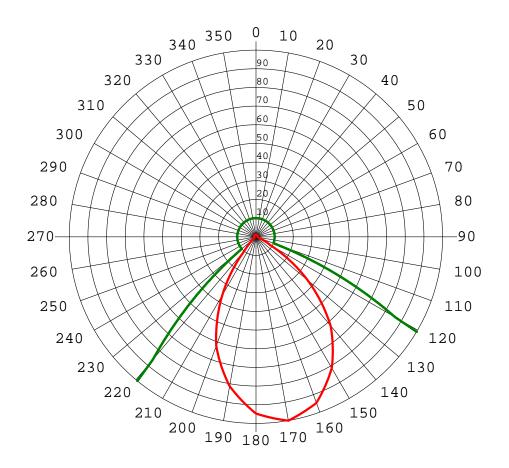
29 inches (737 mm) 17 inches (432 mm) 12 inches (305 mm)

(Shown horizontally polarized)

Mounting Options:

Model	Description
MKPS-1 (shown)	Mounting Kit for 2.375 inch (60 mm) OD mast.
MKPS-2	Mounting Kit for 2.875 inch (73 mm) OD mast.
MKPS-3	Mounting Kit for 3.5 inch (89 mm) OD mast.
MKPS-4	Mounting Kit for 4 inch (102 mm) OD mast.
MKPS-5	Mounting Kit for 4.5 inch (114 mm) OD mast.

Order Information:

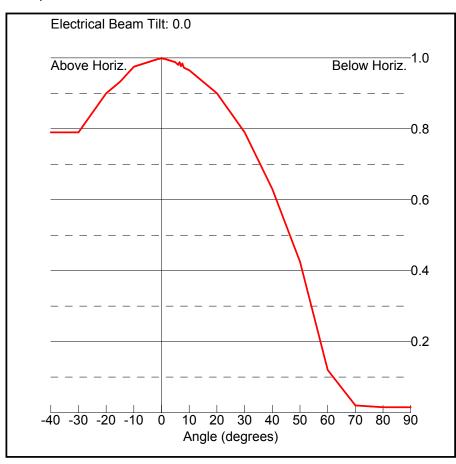

Model	Description
CL-1469B/50	Antenna with 50 Ω N connector
CL-1469B/75	Antenna with 75 Ω N connector
Note:	Requires mounting kit at additional cost (see listing above).

N. Lat. = 383605.0 W. Lng. = 783758.0 HAAT and Distance to Contour, FCC OET,TV 3.2 - 16.1, 130 pts - USGS 03 SEC

Luray - Distance to Contour & Depression Angle

Azi.	AV EL	НААТ	ERP kW	dвk	Field	DAng	VF1d	D-kW	%мах D-dBk	41-F9
000 010 020 030 040 050 060 070 080 090 110 120 130 140 150 160 170 180 190 200 210 220 230 240	311.1 419.3 615.7 578.5 424.8 283.2 277.7 275.5 276.9 294.9 298.2 331.0 384.2 435.7 435.5 409.3 332.7 308.8 417.7 670.0 621.2 459.0 396.8 358.8	646.9 538.7 342.3 379.5 533.2 674.8 680.3 682.5 681.1 663.1 659.8 627.0 573.8 522.5 548.7 623.7 62	0.0000 0.0000 0.0000 0.0000 0.0007 0.0128 0.0379 0.0646 0.0879 0.0879 0.0646 0.0379 0.0128 0.007 0.0128 0.0007 0.0128 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	-50.09 -50.09 -50.09 -50.09 -50.09 -31.40 -18.94 -14.21 -11.90 -10.56 -10.09 -10.56 -11.90 -14.21 -18.94 -31.40 -50.09 -50.09 -50.09 -50.09 -50.09 -50.09 -50.09 -50.09 -50.09	0.010 0.010 0.010 0.010 0.010 0.086 0.361 0.622 0.812 0.947 1.000 0.947 0.812 0.622 0.361 0.022 0.361 0.010 0.010 0.010 0.010 0.010 0.010 0.010	0.705 0.643 0.512 0.540 0.640 0.720 0.722 0.724 0.723 0.713 0.712 0.694 0.633 0.633 0.649 0.692 0.698 0.706 0.644 0.470 0.508 0.619 0.656 0.678	0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997	0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0127 0.0377 0.0642 0.0874 0.0974 0.0874 0.0642 0.0377 0.0127 0.0127 0.00127 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	99.7 -50.09 99.7 -50.09 99.7 -50.09 99.7 -50.09 99.7 -50.09 99.7 -31.40 99.7 -14.21 99.7 -14.21 99.7 -10.56 99.7 -10.56 99.7 -10.56 99.7 -10.56 99.7 -14.21 99.7 -18.94 99.7 -18.94 99.7 -50.09 99.7 -50.09	5.33 5.19 4.57 4.71 5.18 22.03 38.76 45.33 48.62 50.28 50.93 47.10 42.77 36.08 20.75 5.31 5.33 5.33 5.20 4.34 4.55 5.24 5.28

Ave El= 377.94 M HAAT= 580.06 M AMSL= 958 M



Azi	Rel	dBk	kW	dв	Azi	Rel	dBk	kW	dВ
0	1.000 -	14.09	0.039	0.00	180	0.010	-54.09	0.000	-40.00
10	0.947 -	14.56	0.035	-0.47	190	0.010	-54.09	0.000	-40.00
20	0.812 -	15.90	0.026	-1.81	200	0.010	-54.09	0.000	-40.00
30	0.622 -	18.21	0.015	-4.12	210	0.010	-54.09	0.000	-40.00
40	0.361 -	22.94	0.005	-8.85	220	0.010	-54.09	0.000	-40.00
50	0.086 -	35.40	0.000	-21.31	230	0.010	-54.09	0.000	-40.00
60	0.010 -	54.09	0.000	-40.00	240	0.010	-54.09	0.000	-40.00
70	0.010 -	54.09	0.000	-40.00	250	0.010	-54.09	0.000	-40.00
80	0.010 -	54.09	0.000	-40.00	260	0.010	-54.09	0.000	-40.00
90	0.010 -	54.09	0.000	-40.00	270	0.010	-54.09	0.000	-40.00
100	0.010 -	54.09	0.000	-40.00	280	0.010	-54.09	0.000	-40.00
110	0.010 -	54.09	0.000	-40.00	290	0.010	-54.09	0.000	-40.00
120	0.010 -	54.09	0.000	-40.00	300	0.010	-54.09	0.000	-40.00
130	0.010 -	54.09	0.000	-40.00	310	0.086	-35.40	0.000	-21.31
140	0.010 -	54.09	0.000	-40.00	320	0.361	-22.94	0.005	-8.85
150	0.010 -	54.09	0.000	-40.00	330	0.622	-18.21	0.015	-4.12
160	0.010 -	54.09	0.000	-40.00	340	0.812	-15.90	0.026	-1.81
170	0.010 -	54.09	0.000	-40.00	350	0.947	-14.56	0.035	-0.47

Rotation Angle = 170

CL-1469 - Vertical Elevation Pattern, Ruckersville

Angle (deg) -30.0 -30.0 -30.0 -30.0 -25.0 -25.0 -25.0 -20.0 -9 -15.0 -933 -10.0 -975 -5.0 -988 -4.5 -999 -4.0 -999 -3.5 -991 -3.0 -993 -2.5 -1.5 -996 -1.0 -997 -0.5 -1.0 -997 -0.5 -1.0 -997 -1.5 -5.0 -998 -2.5 -1.0 -997 -1.5 -1.0 -997 -1.5 -1.0 -997 -1.5 -1.0 -997 -1.5 -1.5 -996 -1.0 -997 -1.5 -1.0 -997 -1.5 -1.0 -997 -1.5 -1.0 -997 -1.5 -1.5 -996 -1.0 -997 -1.5 -998 -1.5 -994 -1.0 -993 -1.5 -994 -1.0 -993 -1.5 -994 -1.0 -993 -1.5 -994 -1.0 -993 -1.5 -994 -1.0 -993 -1.5 -994 -1.0 -993 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0		
-30.0 -25.0 -25.0 -25.0 -20.0 -15.0 -15.0 -15.0 -30.0 -15.0 -30.0	Angle (dea)	Relative Field
-25.0		
-20.0		
-10.0		
-5.00.988-4.50.989-4.00.99-3.50.991-3.00.993-2.50.994-2.00.995-1.50.996-1.00.9970.01.00.50.9971.00.9971.50.9962.50.9943.00.9933.50.9914.00.994.50.9895.00.9885.50.9846.00.986.50.9848.00.9738.50.9719.00.9699.50.96710.00.96515.00.93320.00.925.00.84530.00.7935.00.7140.00.6345.00.52750.00.42555.00.27360.00.1265.00.0770.00.02		
-4.5 0.989 -4.0 0.99 -3.5 0.991 -3.0 0.993 -2.5 0.994 -2.0 0.995 -1.5 0.996 -1.0 0.997 -0.5 0.997 0.0 1.0 0.5 0.997 1.0 0.997 1.5 0.996 2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50		
-4.0 0.99 -3.5 0.991 -3.0 0.993 -2.5 0.994 -2.0 0.995 -1.5 0.996 -1.0 0.997 -0.5 0.997 0.0 1.0 0.5 0.997 1.0 0.997 1.5 0.996 2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50	-5.0	0.988
-3.5 0.991 -3.0 0.993 -2.5 0.994 -2.0 0.995 -1.5 0.996 -1.0 0.997 -0.5 0.997 0.0 1.0 0.5 0.997 1.0 0.997 1.5 0.996 2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.	-4.5	0.989
-3.0 0.993 -2.5 0.994 -2.0 0.995 -1.5 0.996 -1.0 0.997 -0.5 0.997 0.0 1.0 0.5 0.997 1.0 0.997 1.5 0.996 2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.	-4.0	0.99
-2.5 0.994 -2.0 0.995 -1.5 0.996 -1.0 0.997 -0.5 0.997 0.0 1.0 0.5 0.997 1.0 0.997 1.5 0.996 2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.	-3.5	0.991
-2.0 0.995 -1.5 0.996 -1.0 0.997 -0.5 0.997 0.0 1.0 0.5 0.997 1.0 0.997 1.5 0.996 2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0	-3.0	0.993
-1.5 0.996 -1.0 0.997 -0.5 0.997 0.0 1.0 0.5 0.997 1.0 0.997 1.5 0.996 2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0<	-2.5	0.994
-1.0 0.997 -0.5 0.997 0.0 1.0 0.5 0.997 1.0 0.997 1.5 0.996 2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	-2.0	0.995
-0.5 0.997 0.0 1.0 0.5 0.997 1.0 0.997 1.5 0.996 2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	-1.5	0.996
0.0 1.0 0.5 0.997 1.0 0.997 1.5 0.996 2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	-1.0	0.997
0.5 0.997 1.0 0.997 1.5 0.996 2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	-0.5	0.997
1.0 0.997 1.5 0.996 2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	0.0	1.0
1.5 0.996 2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	0.5	0.997
2.5 0.994 3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	1.0	0.997
3.0 0.993 3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	1.5	0.996
3.5 0.991 4.0 0.99 4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	2.5	0.994
4.00.994.50.9895.00.9885.50.9846.00.986.50.9887.00.9767.50.9848.00.9738.50.9719.00.9699.50.96710.00.96515.00.93320.00.925.00.84530.00.7935.00.7140.00.6345.00.52750.00.42555.00.27360.00.1265.00.0770.00.02	3.0	0.993
4.5 0.989 5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	3.5	0.991
5.0 0.988 5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	4.0	0.99
5.5 0.984 6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	4.5	0.989
6.0 0.98 6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	5.0	0.988
6.5 0.988 7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	5.5	0.984
7.0 0.976 7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	6.0	0.98
7.5 0.984 8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	6.5	0.988
8.0 0.973 8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	7.0	0.976
8.5 0.971 9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	7.5	0.984
9.0 0.969 9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	8.0	0.973
9.5 0.967 10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02		
10.0 0.965 15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02	9.0	0.969
15.0 0.933 20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02		0.967
20.0 0.9 25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02		
25.0 0.845 30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02		
30.0 0.79 35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02		
35.0 0.71 40.0 0.63 45.0 0.527 50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02		
40.00.6345.00.52750.00.42555.00.27360.00.1265.00.0770.00.02		
45.00.52750.00.42555.00.27360.00.1265.00.0770.00.02		
50.0 0.425 55.0 0.273 60.0 0.12 65.0 0.07 70.0 0.02		
55.00.27360.00.1265.00.0770.00.02		
60.00.1265.00.0770.00.02		
65.0 0.07 70.0 0.02		
70.0 0.02		
75.0 0.018		
	75.0	0.018

80.0	0.015
85.0	0.015
90.0	0.015

CL-1469B

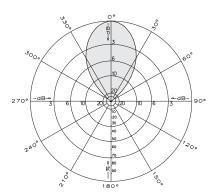
UHF-TV LOG-PERIODIC ANTENNA 8 dBd gain 470–862 MHz (Channels 14–69*)

The Kathrein Scala Division CL-1469B is a ruggedly built, linearly polarized log-periodic antenna designed for professional UHF-TV transmit and receive applications.

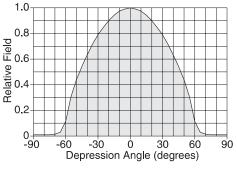
Like all Kathrein Scala Division antennas, the CL-1469B is made of the finest materials using state of the art electrical and mechanical designs resulting in superior performance and long service life. The rugged fiberglass radome protects the antenna from icing and assures stable pattern and gain performance under adverse environmental conditions.

The CL-1469B may be used stand alone or in arrays for higher gain, increased side-lobe suppression, or custom azimuth patterns.

*The CL-1469B covers all 6, 7, and 8 MHz UHF-TV channels worldwide (bands IV/V).


Specifications:

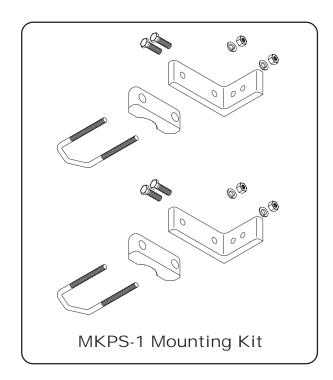
Frequency range	470-862 MHz (broadband)*
Gain	8 dBd
Power gain	6.31
Impedance	50 or 75 ohms
VSWR	< 1.5:1
Polarization	Horizontal or vertical
Front-to-back ratio	>35 dB
Maximum input power	100 watts, type "N" 75 ohm connector 250 watts, type "N" 50 ohm connector
Azimuth pattern	52 degrees (half-power)
Elevation pattern	72 degrees (half-power)
Connector	N female (50 or 75 ohms)
Weight	22 lb (10 kg)
Dimensions	29 x 17 x 12 inches (737 x 432 x 305 mm)
Equivalent flat plate area	2.78 ft ² (.258 m ²)
Wind survival rating*	100 mph (160 kph)
Shipping dimensions	31 x 20 x 14.5 inches (787 x 508 x 368 mm)
Shipping weight	28.0 lb (12.7 kg)
Mounting	Mounting kits available for masts of 2.375 to 4.5 inch (60 to 114 mm) OD.


See reverse for order information.

(Shown horizontally polarized)

Azimuth pattern (E-plane)

Elevation pattern (H-plane)



^{*}Mechanical design is based on environmental conditions as stipulated in EIA-222-F (June 1996) and/or ETS 300 019-1-4 which include the static mechanical load imposed on an antenna by wind at maximum velocity. See the Engineering Section of the catalog for further details.

CL-1469B

UHF-TV LOG-PERIODIC ANTENNA 8 dBd gain 470–862 MHz (Channels 14–69*)

29 inches (737 mm) 17 inches (432 mm) 12 inches (305 mm)

(Shown horizontally polarized)

Mounting Options:

Model	Description
MKPS-1 (shown)	Mounting Kit for 2.375 inch (60 mm) OD mast.
MKPS-2	Mounting Kit for 2.875 inch (73 mm) OD mast.
MKPS-3	Mounting Kit for 3.5 inch (89 mm) OD mast.
MKPS-4	Mounting Kit for 4 inch (102 mm) OD mast.
MKPS-5	Mounting Kit for 4.5 inch (114 mm) OD mast.

Order Information:

Model	Description
CL-1469B/50	Antenna with 50 Ω N connector
CL-1469B/75	Antenna with 75 Ω N connector
Note:	Requires mounting kit at additional cost (see listing above).

N. Lat. = 382843.0 W. Lng. = 782458.0 HAAT and Distance to Contour, FCC OET, TV 3. 2 - 16.1, 130 pts - USGS 03 SEC

Rucke Azi.	ersville AV EL	- Distai HAAT	nce to Cont ERP kW	our - Dep dBk	oressi on Fi el d	Angl e DAng	VFId	D-kW	%Max	D-dBk	41-F9
Azi	AV EL 675. 2 843. 9 911. 0 700. 6 493. 7 552. 1 371. 0 305. 6 326. 7 344. 7 279. 3 268. 0 374. 7 308. 6 6 375. 6 366. 2 397. 3 489. 4 473. 5 2 885. 8 758. 1 618. 6 596. 4 606. 3 659. 1 616. 7	HAAT 514.8 346.1 279.0 489.4 696.3 637.9 819.0 884.4 863.3 910.7 922.0 874.0 815.3 881.4 823.8 792.7 700.6 780.4 716.5 476.8 304.2 431.9 571.4 626.2 650.4 593.6 583.7 530.9 573.3	ERP kW	dBk	Fi el d 0. 010 0. 010 0. 010 0. 010 0. 010 0. 010 0. 010 0. 010 0. 010 0. 010 0. 086 0. 361 0. 622 0. 947 1. 000 0. 947 0. 812 0. 947 0. 812 0. 947 0. 622 0. 361 0. 086 0. 010 0. 010 0. 010 0. 010 0. 010 0. 010 0. 010 0. 010 0. 010 0. 010	DĂng 0. 629 0. 515 0. 463 0. 613 0. 731 0. 700 0. 793 0. 824 0. 814 0. 805 0. 836 0. 841 0. 895 0. 791 0. 795 0. 780 0. 733 0. 774 0. 741 0. 605 0. 662 0. 693 0. 706 0. 675 0. 669 0. 638 0. 663	0. 997 0. 997	0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0051 0. 0150 0. 0256 0. 0388 0. 0348 0. 0388 0. 0348 0. 00551 0. 0150 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000	99. 7 99. 7	-54. 09 -54. 09 -54. 09 -54. 09 -54. 09 -54. 09 -54. 09 -54. 09 -54. 09 -54. 09 -14. 56 -14. 56 -15. 90 -14. 56 -15. 90 -14. 56 -15. 90 -15. 90 -15. 90 -15. 90 -15. 90 -15. 90 -15. 09 -54. 09	3. 49 3. 21 3. 09 3. 45 3. 59 3. 56 3. 64 3. 65 3. 65 3. 68 3. 69 19. 74 42. 98 45. 17 47. 25 47. 38 45. 12 44. 59 40. 33 29. 18 12. 06 3. 53 3. 56 3. 57 3. 54 3. 59 3. 56 3. 59 3. 50 3. 50 3. 50 3. 50 3. 50 3. 50 45. 12 47. 25 47. 38 45. 12 47. 38 45. 12 47. 38 45. 12 47. 38 47. 38 57. 3
310 320 330 340 350	596. 5 529. 6 542. 5 574. 1 592. 3	593. 5 660. 4 647. 5 615. 9 597. 7	0. 0000 0. 0000 0. 0000 0. 0000 0. 0000	-54. 09 -54. 09 -54. 09 -54. 09 -54. 09	0. 010 0. 010 0. 010 0. 010 0. 010	0. 675 0. 712 0. 705 0. 687 0. 677	0. 997 0. 997 0. 997 0. 997 0. 997	0.0000 0.0000 0.0000 0.0000 0.0000	99. 7 99. 7 99. 7	-54. 09 -54. 09 -54. 09 -54. 09	3. 54 3. 57 3. 57 3. 55 3. 54

Ave EI = 527.10 M HAAT= 662.90 M AMSL= 1190 M

-40	0.037
-39.5	0.033
-39	0.026
-38.5	0.019
-38	0.018
-37.5	0.025
-37	0.035
-36.5	0.043
-36	0.048
-35	0.043
-34.5	0.035
-34	0.028
-33.5	0.03
-33	0.041
-32.5	0.055
-32	0.068
-31.5	0.076
-31	0.078
-30.5	0.074
-30	0.064
-29.5	0.049
-29	0.032
-28.5	0.015
-28	0.001
-27.5	0.013
-27	0.019
-26	0.018
-25.5	
	0.017
-25	0.023
-24.5	0.032
-24	0.039
-23.5	0.043
-23	0.041
_	
-22.5	0.034
-22	0.026
-21.5	0.025
-21	0.036
-20.5	0.048
-20	0.056
-19.5	0.056
-19	0.048
-18.5	0.034
-18	0.024
-17.5	0.036
-17	0.059
-16.5	0.077
-16	0.085
-15.5	0.081
-15	0.063

-14.5	0.035
-14	0.022
-13.5	0.056
-13	0.092
-12.5	0.12
-12	0.132
-11.5	0.125
-11	0.1
-10.5	0.062
-10	0.036
-9.5	0.068
-9.5 -9	0.008
-8.5	0.143
-8 7.5	0.153
-7.5 -	0.139
-7	0.106
-6.5	0.077
-5.5	0.158
-5	0.212
-4.5	0.242
-4	0.24
-3.5	0.205
-3	0.169
-2.5	0.209
_	
-2	0.34
-2 -1.5 -1	0.34
-2 -1.5	0.34 0.508
-2 -1.5 -1	0.34 0.508 0.679
-2 -1.5 -1 -0.5	0.34 0.508 0.679 0.828
-2 -1.5 -1 -0.5 0	0.34 0.508 0.679 0.828 0.938
-2 -1.5 -1 -0.5 0 0.5	0.34 0.508 0.679 0.828 0.938 0.994
-2 -1.5 -1 -0.5 0 0.5	0.34 0.508 0.679 0.828 0.938 0.994 0.991
-2 -1.5 -1 -0.5 0 0.5 1	0.34 0.508 0.679 0.828 0.938 0.994 0.991
-2 -1.5 -1 -0.5 0 0.5 1	0.34 0.508 0.679 0.828 0.938 0.994 0.991 0.929
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2	0.34 0.508 0.679 0.828 0.938 0.994 0.991 0.929 0.816 0.666
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2	0.34 0.508 0.679 0.828 0.938 0.994 0.991 0.929 0.816 0.666 0.498
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3	0.34 0.508 0.679 0.828 0.938 0.994 0.991 0.929 0.816 0.666 0.498 0.335
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3	0.34 0.508 0.679 0.828 0.938 0.994 0.991 0.929 0.816 0.666 0.498 0.335 0.21
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4	0.34 0.508 0.679 0.828 0.938 0.994 0.991 0.929 0.816 0.666 0.498 0.335 0.21 0.169
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4	0.34 0.508 0.679 0.828 0.938 0.994 0.991 0.929 0.816 0.666 0.498 0.335 0.21 0.169 0.196
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6	0.34 0.508 0.679 0.828 0.938 0.994 0.991 0.929 0.816 0.666 0.498 0.335 0.21 0.169 0.196 0.224
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5	0.34 0.508 0.679 0.828 0.938 0.994 0.991 0.929 0.816 0.666 0.498 0.335 0.21 0.169 0.196 0.224 0.223 0.194
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5	0.34 0.508 0.679 0.828 0.938 0.994 0.991 0.929 0.816 0.666 0.498 0.335 0.21 0.169 0.196 0.224 0.223 0.194 0.145
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5	0.34 0.508 0.679 0.828 0.938 0.994 0.991 0.929 0.816 0.666 0.498 0.335 0.21 0.169 0.196 0.224 0.223 0.194 0.145 0.097
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6 6.5 7 7.5 8	0.34 0.508 0.679 0.828 0.994 0.991 0.929 0.816 0.666 0.498 0.335 0.21 0.169 0.196 0.224 0.223 0.194 0.145 0.097 0.08
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5	0.34 0.508 0.679 0.828 0.938 0.994 0.991 0.929 0.816 0.666 0.498 0.335 0.21 0.169 0.196 0.224 0.223 0.194 0.145 0.097 0.08 0.101
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6 6.5 7 7.5 8	0.34 0.508 0.679 0.828 0.994 0.991 0.929 0.816 0.666 0.498 0.335 0.21 0.169 0.196 0.224 0.223 0.194 0.145 0.097 0.08

10

0.12

10.5	0.091
11	0.055
11.5	0.041
12	0.064
12.5	0.004
13	0.105
13.5	0.103
14	0.086
14.5	0.057
15	0.025
15.5	0.027
16	0.056
16.5	0.078
17	0.089
17.5	0.087
18	0.074
18.5	0.053
19	0.029
19.5	0.017
20	0.031
20.5	0.045
21	0.052
21.5	0.052
21.3	
	0.043
22.5	0.031
23	0.019
23.5	0.018
24	0.024
24.5	0.029
25	0.03
25.5	0.027
26	0.021
26.5	0.013
27	0.008
27.5	0.005
28	0.003
28.5	0.004
29	0.016
29.5	0.032
30	0.051
30.5	0.07
31	0.087
31.5	0.101
32	0.101
32.5	
	0.112
33	0.106
33.5	0.095
34	0.079

0.061

34.5

35	0.044
35.5	0.034
36	0.035
36.5	0.042
37	0.048
37.5	
	0.05
38	0.048
38.5	0.042
39	0.033
39.5	0.025
40	0.02
40.5	0.022
41	0.027
41.5	0.032
42	0.034
42.5	
	0.033
43	0.03
43.5	0.024
44	0.017
44.5	0.011
45	0.011
45.5	0.015
46	0.02
46.5	0.024
40.5	0.024
47.5	0.025
48	0.022
48.5	0.019
49	0.014
49.5	0.009
50	0.005
50.5	0.004
51	0.007
51.5	0.009
52	0.003
52.5	
	0.011
53	0.011
53.5	0.01
54	0.008
54.5	0.006
55	0.004
55.5	0.002
56	0.001
56.5	0.001
57	0.001
57.5	
	0.001
58	0.002
58.5	0.004
59	0.006

59.5	0.008
60	0.01
60.5	0.012
61	0.012
61.5	
	0.013
62	0.013
62.5	0.013
63	0.011
63.5	0.01
64	0.009
64.5	0.009
65	0.011
65.5	0.014
66	0.017
66.5	0.017
67	0.024
67.5	0.027
68	0.029
68.5	0.031
69	0.032
69.5	0.033
70	0.033
70.5	0.032
71	0.03
71.5	
	0.029
72	0.026
72.5	0.024
73	0.022
73.5	0.02
74	0.019
74.5	0.019
75	0.019
75.5	0.02
76	0.021
76.5	0.021
77 	0.024
77.5	0.025
78	0.026
78.5	0.027
79	0.027
79.5	0.026
80	0.025
80.5	0.024
81	0.022
82	0.017
82.5	0.017
83	0.011
83.5	0.008
84	0.004

84.5	0.001
85	0.004
85.5	0.008
86	0.012
86.5	0.017
87	0.021
87.5	0.025
88	0.029
88.5	0.033
89	0.037
89.5	0.04
90	0.043

-30	0.79
-25	0.845
-20	0.9
-15	0.932
-10	0.975
-5	0.988
-4.5	0.989
-4	0.99
-3.5	0.991
-3	0.993
-2.5	0.994
-2	0.995
-1.5	0.996
-1	0.997
-0.5	0.997
0	1
0.5	0.997
1	0.997
1.5	0.996
2.5	0.994
3	0.993
3.5	0.991
4	0.99
4.5	0.989
- .5	0.988
5.5	0.984
6	0.98
6.5	0.988
7	0.976
7.5	0.984
8	0.973
8.5	0.971
9	0.969
9.5	0.967
10	0.965
15	0.932
20	0.932
25	0.845
30	0.843
35	0.73
40	0.71
40 45	0.63
45 50	
50 55	0.425
	0.273
60 65	0.12
65 70	0.07
70 75	0.02
75	0.018

0.015

80

85 0.015 90 0.015

-30	0.79
-25	0.845
-20	0.9
-15	0.932
-10	0.975
-5	0.988
-4.5	0.989
-4	0.99
-3.5	0.991
-3	0.993
-2.5	0.994
-2	0.995
-1.5	0.996
-1.5 -1	0.997
-1 -0.5	0.997
0	1
0.5	0.997
1	0.997
1.5	0.996
2.5	0.994
3	0.993
3.5	0.991
4	0.99
4.5	0.989
5	0.988
5.5	0.984
6	0.98
6.5	0.988
7	0.976
7.5	0.984
8	0.973
8.5	0.971
9	0.969
9.5	0.967
10	0.965
15	0.932
20	0.9
25	0.845
30	0.79
35	0.71
40	0.63
45	0.527
50	0.327
55	0.423
60	0.273
65	0.12
70 75	0.02
75	0.018

0.015

80

85 0.015 90 0.015

-30	0.79
-25	0.845
-20	0.9
-15	0.932
-10	0.975
-5	0.988
-4.5	0.989
-4	0.99
-3.5	0.991
-3	0.993
-2.5	0.994
-2	0.995
-1.5	0.996
-1.5 -1	0.997
-1 -0.5	0.997
0	1
0.5	0.997
1	0.997
1.5	0.996
2.5	0.994
3	0.993
3.5	0.991
4	0.99
4.5	0.989
5	0.988
5.5	0.984
6	0.98
6.5	0.988
7	0.976
7.5	0.984
8	0.973
8.5	0.971
9	0.969
9.5	0.967
10	0.965
15	0.932
20	0.9
25	0.845
30	0.79
35	0.71
40	0.63
45	0.527
50	0.327
55	0.423
60	0.273
65	0.12
70 75	0.02
75	0.018

0.015

80

85 0.015 90 0.015 Percent allowed new interference: 0.500

Percent allowed new interference to non Class A LPTV: 2.000

Census data selected 2000

Data Base Selected

./data_files/pt_tvdb.sff
TV INTERFERENCE and SPACING ANALYSIS PROGRAM

Date: 12-14-2011 Time: 16:21:58

Record Selected for Analysis (Record is a DTS)

-20111212ABK VA US BPEDT STAUNTON

Channel 11 ERP 0.10 kW HAAT 00328 m RCAMSL 00495 m

Latitude 037-59-00 Longitude 0078-29-02

Status AP Border Zone 1 Site number: 01

Dir Antenna Make CDB Model 00000000078975 Beam tilt N Ref Azimuth 0.0

Elevation Antenna Pattern ID: 123

Last update 00000000 Cutoff date 00000000 Docket

Comments

Applicant SHENANDOAH VALLEY EDUCATIONAL TELEVI

MONT **BPEDT** -20111212ABK **STAUNTON** VA US

Channel 11 ERP 0.01 kW HAAT 00457 m Latitude 038-20-39 Longitude 0079-35-47 HAAT 00457 m RCAMSL 01338 m

Status AP Zone 1 Border Site number: 02

Dir Antenna Make CDB Model 0000000077677 Beam tilt N Ref Azimuth 345.0

Elevation Antenna Pattern ID: 124

Last update 00000000 Cutoff date 00000000 Docket

Applicant SHENANDOAH VALLEY EDUCATIONAL TELEVI

MAIN **BPEDT** -20111212ABK STAUNTON VA US

Channel 11 ERP 10.0 HAAT 00680 m RCAMSL 01333 m kW

Lati tude 038-09-54 Longi tude 0079-18-51

Zone 1 Border Site number: 03

Dir Antenna Make CDB Model 0000000107753 Beam tilt N Ref Azimuth 0.0

Elevation Antenna Pattern ID: 122

Last update 00000000 Cutoff date 00000000 Docket

Comments

Applicant SHENANDOAH VALLEY EDUCATIONAL TELEVI

Cell Size for Service Analysis 2.0 km/side

Distance Increments for Longley-Rice Analysis 1.00 km

Facility (site # 01) meets maximum height/power limits

Facility (site # 02) meets maximum height/power limits

Facility (site # 03) does not meet maximum height/power limits Channel 11 ERP = 10.00 HAAT = 680.

Site number 1

of the Humber	ı		
Azi muth	ERP	HAAT	36. 0 dBu F(50, 90)
(Deg)	(kW)	(m)	(km)
0.0	0. 098	357. 1	61. 1
45.0	0. 029	264. 2	46. 6

90. 0 135. 0	0. 000 0. 001	378. 9 353. 7	16. 9 29. 6
180. 0	0.001	350. 8	29. 0
225. 0	0. 001	324. 8	28. 5
270. 0	0.000	273. 5	13. 9
315. 0	0. 029	321. 6	50. 0

Site number	2		
Azi muth	ERP	HAAT	36.0 dBu F(50, 90)
(Deg)	(kW)	(m)	(km)
0. Ō	0. 008	401. 6	44. 5
45. 0	0.000	268. 2	13. 8
90. 0	0.000	570.8	20. 9
135. 0	0.000	651. 1	23. 0
180. 0	0.000	580. 4	21. 2
225.0	0.000	497. 9	19. 0
270. 0	0.000	386. 1	17. 1
315. 0	0.004	320. 9	34. 3

Database HAAT does not agree with computed HAAT Database HAAT: 457 Computed HAAT: 460

Site number	3		
Azi muth	ERP	HAAT	36.0 dBu F(50, 90)
(Deg)	(kW)	(m)	(km)
0. Ŏ	0. 009	685.0	57. 2
45. 0	0. 649	683.0	92. 0
90.0	7.043	778. 4	114. 3
135.0	6. 071	709. 4	111. 5
180. 0	5. 173	722. 7	110. 4
225. 0	5. 762	619. 0	108. 4
270. 0	0.049	657.0	69. 8
315.0	0.006	609. 3	52. 2

Database HAAT does not agree with computed HAAT Database HAAT: 680 Computed HAAT: 683

Evaluation toward Class A Stations from site # 01

No Spacing violations or contour overlap to Class A stations from site # 01

Evaluation toward Class A Stations from site # 02

No Spacing violations or contour overlap to Class A stations from site # 02

Evaluation toward Class A Stations from site # 03

No Spacing violations or contour overlap to Class A stations from site # 03

Class A Evaluation Complete

SPACING VIOLATION FOUND BETWEEN STATION

CVIL 11 STAUNTON VA BPEDT 20111212ABK Site # 01

and station

SHORT TO: WBAL-TV 11 BALTIMORE MD BLCDT 20090619ABW

039-20- 5 0076-39- 3

Req. separation 244.6 Actual separation 219.0 Short 25.6 km

SHORT TO: WBAL-TV 11 BALTIMORE 039-20- 5 0076-39- 3 MD BPCDT 20100429AAF

Req. separation 244.6 Actual separation 219.0 Short 25.6 km

SHORT TO: WVPT 11 STAUNTON VA BPEDT 20081022ABK

038-09-54 0079-18-51

Reg. separation 244.6 Actual separation 75.6 Short 169.0 km

VA DTVPLN 11 STAUNTON DTVP0338

SHORT TO: WVPT 11 38 -09-54 79 -18-51

Req. separation 244.6 Actual separation 75.6 Short 169.0 km

SHORT TO: WVPT 11 STAUNTON VA BLEDT 20021220ADX

038-09-54 0079-18-51

Req. separation 244.6 Actual separation 75.6 Short 169.0 km

SHORT TO: WWBT 12 037-30-23 0077-30-12 12 RICHMOND VA BLCDT 20090803ABS

Req. separation => 20.0 <= 110.0 Actual separation 101.3 Short 8.7(81.3)

km

SPACING VIOLATION FOUND BETWEEN STATION

MONT 11 STAUNTON VA BPEDT 20111212ABK Site # 02

and station

11 JEANNETTE PA BMPCDT SHORT TO: WPCW 20080616ABM

040-29-38 0080-01- 9

Req. separation 244.6 Actual separation 241.4 Short 3.2 km

SHORT TO: WPCW PA BLCDT 20090626AAT 11 JEANNETTE

040-29-38 0080-01- 9

Req. separation 244.6 Actual separation 241.4 Short 3.2 km

SHORT TO: WVPT 11 STAUNTON VA BPEDT 20081022ABK

038-09-54 0079-18-51

Req. separation 244.6 Actual separation 31.7 Short 212.9 km

SHORT TO: WVPT 11 STAUNTON VA DTVPLN DTVP0338

38 -09-54 79 -18-51

Req. separation 244.6 Actual separation 31.7 Short 212.9 km

SHORT TO: WVPT 11 STAUNTON VA BLEDT 20021220ADX

038-09-54 0079-18-51

Req. separation 244.6 Actual separation 31.7 Short 212.9 km

SPACING VIOLATION FOUND BETWEEN STATION

MAIN 11 STAUNTON VA BPEDT 20111212ABK Site # 03

and station

SHORT TO: WVPT 11 STAUNTON VA BPEDT 20081022ABK

038-09-54 0079-18-51

Req. separation 244.6 Actual separation 0.0 Short 244.6 km

SHORT TO: WVPT 11 STAUNTON VA DTVPLN DTVP0338

38 -09-54 79 -18-51

Req. separation 244.6 Actual separation 0.0 Short 244.6 km

SHORT TO: WVPT 11 STAUNTON VA BLEDT 20021220ADX

038-09-54 0079-18-51

Req. separation 244.6 Actual separation 0.0 Short 244.6 km

Checks to Site Number 01

Proposed facility OK to FCC Monitoring Stations

Proposed facility OK toward West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Proposed station is OK toward AM broadcast stations

Checks to Site Number 02

Proposed facility OK to FCC Monitoring Stations

Proposed facility within West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Proposed station is OK toward AM broadcast stations

Checks to Site Number 03

Proposed facility OK to FCC Monitoring Stations

Proposed facility within West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Proposed station is OK toward AM broadcast stations

Start of Interference Analysis

Proposed Station
Channel Call City/State
11 CVIL STAUNTON VA

ARN BPEDT 20111212ABK

Stations Potentially Affected by Proposed Station

Chan 10	Call WAZT-CA	City/State WOODSTOCK VA	Dist(km) 109.1	Status LIC	Application	on Ref. No. 20030718ADF
10	WVFX	CLARKSBURG WV	217. 9	LIC	BLCDT	20090612AJY
10	WSWP-TV	GRANDVI EW WV	219. 8	LIC	BLEDT	20100210AAQ
10	WSWP-TV	GRANDVI EW WV	219. 8	APP	BDSTA	20080225AGT
11	WBAL-TV	BALTI MORE MD	218. 8	LIC	BLCDT	20090619ABW
11	WBAL-TV	BALTI MORE MD	218. 8	СР	BPCDT	20100429AAF
11	WTVI	CHARLOTTE NC	358. 8	LIC	BLEDT	20101222ABA
11	WTVD	DURHAM NC	257. 4	LIC	BLCDT	20100929AGW
11	WPCW	JEANNETTE PA	308.8	CP MOD	BMPCDT	20080616ABM
11	WPCW	JEANNETTE PA	308.8	LIC	BLCDT	20090626AAT
11	WBRE-TV	WI LKES-BARRE PA	420. 0	LIC	BLCDT	20051123AJX
11	WJHL-TV	JOHNSON CITY TN	366. 5	LIC	BLCDT	20100910AAC
12	WWBT	RI CHMOND VA	101. 2	LIC	BLCDT	20090803ABS
12	WBOY-TV	CLARKSBURG WV	215. 9	LIC	BLCDT	20090227ABW
12	WWPX-TV	MARTI NSBURG WV	167. 8	LIC	BLCDT	20021108AAX

Analysis of Interference to Affected Station 1

Analysis of current record

Channel Call City/State Application Ref. No.

10 WAZT-CA WOODSTOCK VA BLTVA -20030718ADF

Chan	Call	Ci ty/State	Dist(km) Status	Application Ref. No. BLCDT -20110314ACQ
09	WUSA	WASHINGTON DC	116.7 LIC	
09	WO9CT-D	MATHIAS, ETC. WV	43.6 LIC	BLDTV -20090121AGY

10	WOIO	SHAKER HEIGHTS OH	386. 6	LIC	BLCDT	-19991110AAR
10	WOIO	SHAKER HEIGHTS OH	386. 6	СР	BPCDT	-20080620AKW
10	WHTM-TV	HARRI SBURG PA	196. 5	LIC	BLCDT	-20040812AAH
10	WHTM-TV	HARRI SBURG PA	196. 5	СР	BPCDT	-20080620AGL
10	WVFX	CLARKSBURG WV	169. 2	LIC	BLCDT	-20090612AJY
10	WSWP-TV	GRANDVI EW WV	252. 5	LIC	BLEDT	-20100210AAQ
10	WSWP-TV	GRANDVI EW WV	252. 5	APP	BDSTA	-20080225AGT
11	WVPT	STAUNTON VA	117. 5	СР	BPEDT	-20081022ABK
11	WVPT	STAUNTON VA	117. 5	PLN	DTVPLN	-DTVP0338
11	WVPT	STAUNTON VA	117. 5	LIC	BLEDT	-20021220ADX
11	CVIL	STAUNTON VA	109. 1	AP	BPEDT	-20111212ABK
11	MONT	STAUNTON VA	122. 5	AP	BPEDT	-20111212ABK
11	MAIN	STAUNTON VA	117. 5	AP	BPEDT	-20111212ABK

Proposal causes no interference

Analysis of Interference to Affected Station

Analysis of current record Channel Call City/State 10 WVFX CLARKSBURG WV Application Ref. No. BLCDT -20090612AJY

Chan 09	Call WTOV-TV	Ci ty/State STEUBENVILLE OH	Dist(km) 118.2		Application BLCDT	on Ref. No. -20090507AAC
09	WTOV-TV	STEUBENVILLE OH	118. 2	СР	BPCDT	-20110308ABN
10	WOIO	SHAKER HEIGHTS OH	258. 7	LIC	BLCDT	-19991110AAR
10	WOIO	SHAKER HEIGHTS OH	258. 7	СР	BPCDT	-20080620AKW
10	WHTM-TV	HARRI SBURG PA	310. 9	LIC	BLCDT	-20040812AAH
10	WHTM-TV	HARRI SBURG PA	310. 9	СР	BPCDT	-20080620AGL
10	WSWP-TV	GRANDVI EW WV	165. 9	LIC	BLEDT	-20100210AAQ
10	WSWP-TV	GRANDVI EW WV	165. 9	APP	BDSTA	-20080225AGT
11	WPCW	JEANNETTE PA	135. 5	CP MOD	BMPCDT	-20080616ABM
11	WPCW	JEANNETTE PA	135. 5	LIC	BLCDT	-20090626AAT
11	WVPT	STAUNTON VA	154. 6	PLN	DTVPLN	-DTVP0338
11	CVIL	STAUNTON VA	217. 9	AP	BPEDT	-20111212ABK
11	MONT	STAUNTON VA	124. 4	AP	BPEDT	-20111212ABK

11 MAIN STAUNTON VA 154.6 AP BPEDT -20111212ABK

Proposal causes no interference

Analysis of Interference to Affected Station 3

Analysis of current record

Channel Call City/State Application Ref. No.
10 WSWP-TV GRANDVIEW WV BLEDT -20100210AAQ

Stations Potentially Affecting This Station

Chan 10	Call WNCT-TV	City/State GREENVILLE NC	Dist(km) 426.5	Status LIC	Application BLCDT	on Ref. No. -20110504ACA
10	WOIO	SHAKER HEIGHTS OH	392. 7	LIC	BLCDT	-19991110AAR
10	WOIO	SHAKER HEIGHTS OH	392. 7	СР	BPCDT	-20080620AKW
10	WIS	COLUMBIA SC	419. 7	LIC	BLCDT	-20090624ABZ
10	WBI R-TV	KNOXVILLE TN	335. 9	LIC	BLCDT	-20090619ADG
10	WVFX	CLARKSBURG WV	165. 9	LIC	BLCDT	-20090612AJY
11	WJHL-TV	JOHNSON CITY TN	191. 9	LIC	BLCDT	-20100910AAC
11	WVPT	STAUNTON VA	149. 7	PLN	DTVPLN	-DTVP0338
11	CVI L	STAUNTON VA	219. 8	AP	BPEDT	-20111212ABK
11	MONT	STAUNTON VA	131. 6	AP	BPEDT	-20111212ABK
11	MAIN	STAUNTON VA	149. 7	AP	BPEDT	-20111212ABK

Proposed station is beyond the site to nearest cell evaluation distance

Analysis of Interference to Affected Station 4

Analysis of current record

Channel Call City/State Application Ref. No. 10 WSWP-TV GRANDVIEW WV BDSTA -20080225AGT

Chan 10	Call WNCT-TV	City/State GREENVILLE NC	Dist(km) 426.5	Status LIC	Application BLCDT	on Ref. No. -20110504ACA
10	WOIO	SHAKER HEIGHTS OH	392. 7	LIC	BLCDT	-19991110AAR
10	WOIO	SHAKER HEIGHTS OH	392. 7	CP	BPCDT	-20080620AKW
10	WIS	COLUMBIA SC	419. 7	LIC	BLCDT	-20090624ABZ
10	WBI R-TV	KNOXVILLE TN	335. 9	LIC	BLCDT	-20090619ADG
10	WVFX	CLARKSBURG WV	165. 9	LIC	BLCDT	-20090612AJY

11	WJHL-TV	JOHNSON CITY TN	191. 9	LIC	BLCDT	-20100910AAC
11	WVPT	STAUNTON VA	149. 7	PLN	DTVPLN	-DTVP0338
11	CVIL	STAUNTON VA	219. 8	AP	BPEDT	-20111212ABK
11	MONT	STAUNTON VA	131. 6	AP	BPEDT	-20111212ABK
11	MAIN	STAUNTON VA	149. 7	AP	BPEDT	-20111212ABK

Proposed station is beyond the site to nearest cell evaluation distance

Analysis of Interference to Affected Station 5

Analysis of current record

Channel Call City/State Application Ref. No.
11 WBAL-TV BALTIMORE MD BLCDT -20090619ABW

Stations Potentially Affecting This Station

Chan 10	Call WHTM-TV	Ci ty/State HARRI SBURG PA	Dist(km) 112.0	Status LIC	Application	on Ref. No. -20040812AAH
10	WHTM-TV	HARRI SBURG PA	112. 0	СР	BPCDT	-20080620AGL
11	WPIX	NEW YORK NY	271. 7	APP	BMPCDT	-20080620ALB
11	WPI X	NEW YORK NY	275. 8	LIC	BLCDT	-20090911ABN
11	WPCW	JEANNETTE PA	314. 7	CP MOD	BMPCDT	-20080616ABM
11	WPCW	JEANNETTE PA	314. 7	LIC	BLCDT	-20090626AAT
11	WBRE-TV	WILKES-BARRE PA	215. 7	LIC	BLCDT	-20051123AJX
11	WVPT	STAUNTON VA	264. 9	PLN	DTVPLN	-DTVP0338
11	CVIL	STAUNTON VA	218. 8	AP	BPEDT	-20111212ABK
11	MONT	STAUNTON VA	277. 7	AP	BPEDT	-20111212ABK
11	MAIN	STAUNTON VA	264. 9	AP	BPEDT	-20111212ABK
12	WHYY-TV	WILMINGTON DE	144. 0	CP MOD	BMPEDT	-20091204ADC
12	WWBT	RI CHMOND VA	216. 4	LIC	BLCDT	-20090803ABS
12	WWPX-TV	MARTI NSBURG WV	122. 2	LIC	BLCDT	-20021108AAX

Total scenarios = 8

Result key: 1

Scenario 1 Affected station 5

Before Analysis

Results for: 11A MD BALTIMORE BLCDT 20090619ABW LIC HAAT 299.0 m, ATV ERP 5.0 kW

HAAT 299.0 m, ATV ERP 5.0 kW
POPULATION AREA (sq km)
within Noise Limited Contour 7449700 24125.2

not affected by terrain losses 7175012 22901.0

```
lost to NTSC IX
                                                          0.0
   lost to additional IX by ATV lost to ATV IX only
                                                        946.3
                                        217701
                                         217701
                                                        946. 3
   lost to all IX
                                                        946.3
                                        217701
 Potential Interfering Stations Included in above Scenario
10A PA HARRI SBURG
                              BLCDT
                                          20040812AAH
                                                        LIC
11A NY NEW YORK
                              BLCDT
                                          20090911ABN
                                                        LIC
                                                        CP
11A PA JEANNETTE
                              BMPCDT
                                          20080616ABM
11A PA WILKES-BARRE
                              BLCDT
                                          20051123AJX
                                                        LIC
12A WV MARTINSBURG
                                          20021108AAX
                              BLCDT
                                                        LIC
11A VA STAUNTON
                              DTVPLN
                                         DTVP0338
                                                        PLN
After Analysis
                                             BLCDT
                                                        20090619ABW LIC
Results for: 11A MD BALTIMORE
   HAAT 299.0 m, ATV ERP
                               5.0 kW
                                     POPULATI ON
                                                   AREA (sq km)
   within Noise Limited Contour
                                       7449700
                                                      24125.2
   not affected by terrain losses
                                       7175012
                                                      22901.0
   lost to NTSC IX
                                                          0.0
                                              \cap
   lost to additional IX by ATV
                                                        958.4
                                        218333
   lost to ATV IX only
                                        218333
                                                        958.4
                                                        958.4
   lost to all IX
                                        218333
 Potential Interfering Stations Included in above Scenario
                                                                     1
10A PA HARRI SBURG
                               BLCDT
                                          20040812AAH
                                                        LIC
11A NY NEW YORK
                                          20090911ABN
                                                        LIC
                              BLCDT
                              BMPCDT
                                                        CP
11A PA JEANNETTE
                                          20080616ABM
11A PA WILKES-BARRE
                              BLCDT
                                          20051123AJX
                                                        LIC
12A WV MARTINSBURG
                              BLCDT
                                          20021108AAX
                                                        LIC
11A VA STAUNTON
                              BPEDT
                                          20111212ABK
                                                        AP
Percent new IX =
                     0.0091%
Result key:
                 2 Affected station
Scenari o
Before Analysis
Results for: 11A MD BALTIMORE
                                             BLCDT
                                                        20090619ABW LIC
   HAAT 299.0 m, ATV ERP
                               5.0 kW
                                     POPULATI ON
                                                   AREA (sq km)
   within Noise Limited Contour
not affected by terrain losses
lost to NTSC IX
                                                     24125. 2
                                       7449700
                                       7175012
                                                      22901.0
                                              0
                                                          0.0
   lost to additional IX by ATV
                                                        946.3
                                        217701
   lost to ATV IX only
                                        217701
                                                        946.3
   lost to all IX
                                        217701
                                                        946.3
 Potential Interfering Stations Included in above Scenario
                                                                     2
10A PA HARRI SBURG
                              BLCDT
                                          20040812AAH
                                                        IIC
11A NY NEW YORK
                              BLCDT
                                          20090911ABN
                                                        LIC
11A PA JEANNETTE
                              BLCDT
                                          20090626AAT
                                                        LIC
11A PA WILKES-BARRE
                                          20051123AJX
                                                        LIC
                              BLCDT
12A WV MARTINSBURG
                              BLCDT
                                          20021108AAX
                                                        IIC
                                                        PLN
11A VA STAUNTON
                              DTVPLN
                                         DTVP0338
After Analysis
Results for: 11A MD BALTIMORE
HAAT 299.0 m, ATV ERP
                                                        20090619ABW LIC
                                             BLCDT
                             5.0 kW
                                                   AREA (sq km)
24125.2
                                     POPULATI ON
                                       7449700
   within Noise Limited Contour
   not affected by terrain losses
                                       7175012
                                                      22901.0
   lost to NTSC IX
                                              0
                                                          0.0
```

```
lost to additional IX by ATV
                                       218333
                                                      958.4
   lost to ATV IX only lost to all IX
                                       218333
                                                      958.4
                                                      958.4
                                       218333
 Potential Interfering Stations Included in above Scenario
                                                                  2
                             BLCDT
10A PA HARRI SBURG
                                        20040812AAH
11A NY NEW YORK
                             BLCDT
                                        20090911ABN
                                                     LIC
11A PA JEANNETTE
                             BLCDT
                                        20090626AAT
                                                     LIC
11A PA WILKES-BARRE
                                        20051123AJX
                             BLCDT
                                                     LIC
12A WV MARTINSBURG
                             BLCDT
                                        20021108AAX
                                                     LIC
11A VA STAUNTON
                             BPEDT
                                        20111212ABK
                                                     AΡ
Percent new IX =
                    0.0091%
Result key:
                 3 Affected station
Scenari o
Before Analysis
Results for: 11A MD BALTIMORE HAAT 299.0 m, ATV ERP
                                           BLCDT
                                                      20090619ABW LIC
                            5.0 kW
                                                 AREA (sq km)
24125.2
                                   POPULATI ON
                                      7449700
   within Noise Limited Contour
   not affected by terrain losses
                                      7175012
                                                   22901.0
                                                       0.0
   lost to NTSC IX
                                            0
   lost to additional IX by ATV
                                       228326
                                                      974.5
   lost to ATV IX only
                                       228326
                                                      974.5
   lost to all IX
                                                      974.5
                                       228326
 Potential Interfering Stations Included in above Scenario
                                                                  3
10A PA HARRI SBURG
                             BPCDT
                                        20080620AGL
11A NY NEW YORK
                             BLCDT
                                        20090911ABN
                                                     LIC
                             BMPCDT
                                                     CP
11A PA JEANNETTE
                                        20080616ABM
11A PA WILKES-BARRE
                             BLCDT
                                        20051123AJX
                                                     LIC
12A WV MARTINSBURG
                             BLCDT
                                        20021108AAX
                                                     LIC
11A VA STAUNTON
                             DTVPLN
                                        DTVP0338
                                                      PLN
After Analysis
Results for: 11A MD BALTIMORE
                                           BLCDT
                                                     20090619ABW LIC
                              5.0 kW
   HAAT 299.0 m, ATV ERP
                                   POPULATI ON
                                                 AREA (sq km)
                                                   24125. 2
   within Noise Limited Contour
                                      7449700
   not affected by terrain losses
lost to NTSC IX
                                      7175012
                                                   22901.0
                                                       0.0
                                       228958
   lost to additional IX by ATV
                                                      986.6
   lost to ATV IX only
                                                      986.6
                                       228958
   lost to all IX
                                       228958
                                                      986.6
 Potential Interfering Stations Included in above Scenario
                                                                  3
10A PA HARRI SBURG
                             BPCDT
                                        20080620AGL
                                                      CP
11A NY NEW YORK
                                        20090911ABN
                             BLCDT
                                                     LIC
11A PA JEANNETTE
                             BMPCDT
                                        20080616ABM
                                                      CP
11A PA WILKES-BARRE
                                                      LIC
                             BLCDT
                                        20051123AJX
12A WV MARTINSBURG
                             BLCDT
                                        20021108AAX
                                                     LIC
11A VA STAUNTON
                             BPEDT
                                        20111212ABK
                                                     ΑP
Percent new IX =
                    0.0091%
Result key:
                   Affected station
Scenari o
Before Analysis
Results for: 11A MD BALTIMORE
                                           BLCDT
                                                      20090619ABW LIC
   HAAT 299.0 m, ATV ERP 5.0 kW
                                   POPULATI ON
                                               AREA (sq km)
```

```
7449700
                                                   24125.2
   within Noise Limited Contour
   not affected by terrain losses lost to NTSC IX
                                                    22901.0
                                      7175012
                                            0
                                                        0.0
   lost to additional IX by ATV
                                                      974.5
                                       228326
   lost to ATV IX only
                                       228326
                                                      974.5
   lost to all IX
                                       228326
                                                      974.5
 Potential Interfering Stations Included in above Scenario
                                                                  4
                             BPCDT
10A PA HARRI SBURG
                                        20080620AGL
                                                      CP
11A NY NEW YORK
                             BLCDT
                                        20090911ABN
                                                      LIC
11A PA JEANNETTE
                                        20090626AAT
                                                      LIC
                             BLCDT
11A PA WILKES-BARRE
                             BLCDT
                                        20051123AJX
                                                     LIC
12A WV MARTINSBURG
                             BLCDT
                                        20021108AAX
                                                     LIC
11A VA STAUNTON
                             DTVPLN
                                        DTVP0338
                                                      PLN
After Analysis
                                           BLCDT
                                                      20090619ABW LIC
Results for: 11A MD BALTIMORE
   HAAT 299.0 m, ATV ERP
                              5.0 kW
                                    POPULATI ON
                                                 AREA (sq km)
                                                   24125.2
                                      7449700
   within Noise Limited Contour
   not affected by terrain losses
                                                    22901.0
                                      7175012
   lost to NTSC IX
                                            0
                                                        0.0
                                       228958
                                                      986.6
   lost to additional IX by ATV
   lost to ATV IX only
                                       228958
                                                      986.6
   lost to all IX
                                       228958
                                                      986.6
 Potential Interfering Stations Included in above Scenario
                             BPCDT
10A PA HARRI SBURG
                                        20080620AGL
11A NY NEW YORK
                             BLCDT
                                        20090911ABN
                                                     LIC
11A PA JEANNETTE
                             BLCDT
                                        20090626AAT
                                                      LIC
11A PA WILKES-BARRE
                                        20051123AJX
                             BLCDT
                                                     LIC
12A WV MARTINSBURG
                             BLCDT
                                        20021108AAX
                                                     IIC
11A VA STAUNTON
                             BPEDT
                                        20111212ABK
                                                     AΡ
Percent new IX =
                     0.0091%
                    5
Result key:
Scenari o
                   Affected station
Before Analysis
Results for: 11A MD BALTIMORE
                                           BLCDT
                                                      20090619ABW LIC
   HAAT 299.0 m, ATV ERP
                            5.0 kW
                                    POPULATI ON
                                                 AREA (sq km)
24125.2
   within Noise Limited Contour
                                      7449700
   not affected by terrain losses
                                      7175012
                                                    22901.0
   lost to NTSC IX
                                                        0.0
                                            n
   lost to additional IX by ATV
                                       217359
                                                      942.3
   lost to ATV IX only
                                       217359
                                                      942.3
   lost to all IX
                                       217359
                                                      942.3
 Potential Interfering Stations Included in above Scenario
                                                                  5
10A PA HARRI SBURG
                             BLCDT
                                        20040812AAH
                                                     LIC
11A NY NEW YORK
                             BMPCDT
                                                     APP
                                        20080620ALB
11A PA JEANNETTE
                             BMPCDT
                                        20080616ABM
                                                      CP
11A PA WILKES-BARRE
                             BLCDT
                                        20051123AJX
                                                      LIC
12A WV MARTI NSBURG
                             BLCDT
                                        20021108AAX
                                                     LIC
                                                      PLN
11A VA STAUNTON
                             DTVPLN
                                        DTVP0338
After Analysis
Results for: 11A MD BALTIMORE
                                           BLCDT
                                                      20090619ABW LIC
   HAAT 299.0 m, ATV ERP
                              5.0 kW
                                    POPULATI ON
                                                 AREA (sq km)
  within Noise Limited Contour
                                      7449700
                                                   24125.2
```

not affected by terrain lost to NTSC IX lost to additional IX by lost to ATV IX only lost to all IX	l osses ATV	7175012 2 0 217991 217991 217991	2901. 0 0. 0 954. 4 954. 4 954. 4	
Potential Interfering Stat	ions Incl	uded in above	Scenari o	5
10A PA HARRISBURG 11A NY NEW YORK 11A PA JEANNETTE 11A PA WILKES-BARRE 12A WV MARTINSBURG 11A VA STAUNTON	BLCDT BMPCDT BMPCDT BLCDT BLCDT BPEDT	20040812AAH 20080620ALB 20080616ABM 20051123AJX 20021108AAX 20111212ABK	LIC APP CP LIC LIC AP	
Percent new IX = 0.0091%				
Result key: 6 Scenario 6 Affected Before Analysis	station	5		
Results for: 11A MD BALTIMO HAAT 299.0 m, ATV ERP	50 kW		20090619ABW	LIC
within Noise Limited Con not affected by terrain lost to NTSC IX lost to additional IX by lost to ATV IX only lost to all IX	PO tour I osses ATV	PULATI ON ARE 7449700 2 2 17359 217359	A (sq km) 4125.2 2901.0 0.0 942.3 942.3 942.3	
Potential Interfering Stat				6
10A PA HARRISBURG 11A NY NEW YORK 11A PA JEANNETTE 11A PA WILKES-BARRE 12A WV MARTINSBURG 11A VA STAUNTON	BLCDT BMPCDT BLCDT BLCDT BLCDT DTVPLN	20040812AAH 20080620ALB 20090626AAT 20051123AJX 20021108AAX DTVP0338	LIC APP LIC LIC LIC PLN	
After Analysis				
Results for: 11A MD BALTIMO HAAT 299.0 m, ATV ERP	5.0 kW			LIC
within Noise Limited Connot affected by terrain lost to NTSC IX lost to additional IX by lost to ATV IX only lost to all IX	tour I osses		A (sq km) 4125.2 2901.0 0.0 954.4 954.4	
Potential Interfering Stat	ions Incl	uded in above	Scenari o	6
10A PA HARRI SBURG 11A NY NEW YORK 11A PA JEANNETTE 11A PA WI LKES-BARRE 12A WV MARTI NSBURG 11A VA STAUNTON	BLCDT BMPCDT BLCDT BLCDT BLCDT BPEDT	20040812AAH 20080620ALB 20090626AAT 20051123AJX 20021108AAX 20111212ABK	APP LIC LIC LIC	
Percent new IX = 0.0091%				
Result key: 7 Scenario 7 Affected Before Analysis	station	5		
Results for: 11A MD BALTIMO	RE	BLCDT	20090619ABW	LIC

```
HAAT 299.0 m, ATV ERP
                              5.0 kW
                                                AREA (sq km)
24125.2
                                   POPULATI ON
   within Noise Limited Contour
                                     7449700
   not affected by terrain losses
                                                   22901.0
                                     7175012
   lost to NTSC IX
                                                      0.0
                                           0
   lost to additional IX by ATV
                                      227984
                                                     970.5
                                      227984
                                                     970.5
   lost to ATV IX only
                                                     970.5
   lost to all IX
                                      227984
 Potential Interfering Stations Included in above Scenario
10A PA HARRI SBURG
                             BPCDT
                                       20080620AGL
11A NY NEW YORK
                                                     APP
                             BMPCDT
                                       20080620ALB
11A PA JEANNETTE
                                                     CP
                             BMPCDT
                                       20080616ABM
11A PA WILKES-BARRE
                             BLCDT
                                       20051123AJX
                                                     LIC
12A WV MARTINSBURG
                             BLCDT
                                       20021108AAX
                                                     LIC
11A VA STAUNTON
                             DTVPLN
                                       DTVP0338
                                                     PLN
After Analysis
                                          BLCDT
Results for: 11A MD BALTIMORE
                                                     20090619ABW LIC
   HAAT 299.0 m, ATV ERP
                              5.0 kW
                                   POPULATI ON
                                                 AREA (sq km)
   within Noise Limited Contour
                                     7449700
                                                   24125.2
   not affected by terrain losses
                                                   22901.0
                                     7175012
   lost to NTSC IX
                                           0
                                                       0.0
                                                     982.6
   lost to additional IX by ATV
                                      228616
   lost to ATV IX only
                                                     982.6
                                      228616
   lost to all IX
                                      228616
                                                     982.6
 Potential Interfering Stations Included in above Scenario
                                                                 7
10A PA HARRI SBURG
                             BPCDT
                                       20080620AGL
                                                     APP
11A NY NEW YORK
                             BMPCDT
                                       20080620ALB
11A PA JEANNETTE
                             BMPCDT
                                       20080616ABM
                                                     CP
11A PA WILKES-BARRE
                             BLCDT
                                       20051123AJX
                                                     LIC
12A WV MARTINSBURG
                             BLCDT
                                       20021108AAX
                                                     LIC
11A VA STAUNTON
                             BPEDT
                                       20111212ABK
                                                     AP
Percent new IX =
                    0.0091%
Result key:
Scenari o
                   Affected station
Before Analysis
Results for: 11A MD BALTIMORE
                                          BLCDT
                                                     20090619ABW LIC
   HAAT 299.0 m, ATV ERP
                              5.0 kW
                                   POPULATI ON
                                                 AREA (sq km)
                                                   24125.2
   within Noise Limited Contour
                                     7449700
   not affected by terrain losses
                                     7175012
                                                   22901.0
   lost to NTSC IX
                                           0
                                                       0.0
                                      227984
                                                     970.5
   lost to additional IX by ATV
   lost to ATV IX only
                                      227984
                                                     970.5
   lost to all IX
                                      227984
                                                     970.5
 Potential Interfering Stations Included in above Scenario
10A PA HARRI SBURG
                             BPCDT
                                       20080620AGL
11A NY NEW YORK
                             BMPCDT
                                       20080620ALB
                                                     APP
11A PA JEANNETTE
                             BLCDT
                                       20090626AAT
                                                     LIC
11A PA WILKES-BARRE
                                       20051123AJX
                             BLCDT
                                                     LIC
12A WV MARTINSBURG
                                       20021108AAX
                                                     LIC
                             BLCDT
11A VA STAUNTON
                             DTVPLN
                                       DTVP0338
                                                     PLN
After Analysis
Results for: 11A MD BALTIMORE
                                          BLCDT
                                                     20090619ABW LIC
   HAAT 299.0 m, ATV ERP
                              5.0 kW
```

	POPULATI ON	AREA (sq km)
within Noise Limited Contour	7449700	24125. 2
not affected by terrain losses	7175012	22901. 0
lost to NTSC IX	0	0.0
lost to additional IX by ATV	228616	982. 6
lost to ATV IX only	228616	982. 6
lost to all IX	228616	982. 6

Potential Interfering Stations Included in above Scenario 8

10A PA	HARRI SBURG	BPCDT	20080620AGL	CP
11A NY	NEW YORK	BMPCDT	20080620ALB	APP
11A PA	JEANNETTE	BLCDT	20090626AAT	LIC
11A PA	WI LKES-BARRE	BLCDT	20051123AJX	LIC
12A WV	MARTI NSBURG	BLCDT	20021108AAX	LIC
11A VA	STAUNTON	BPEDT	20111212ABK	AP

Percent new IX = 0.0091%

Worst case new IX 0.0091% Scenario 3

Analysis of Interference to Affected Station 6

Analysis of current record

Channel Call City/State Application Ref. No.

11 WBAL-TV BALTIMORE MD BPCDT -20100429AAF

Stations Potentially Affecting This Station

Chan 10	Call WHTM-TV	Ci ty/State HARRI SBURG PA	Dist(km) 112.0	Status LIC	Application BLCDT	on Ref. No. -20040812AAH
10	WHTM-TV	HARRI SBURG PA	112. 0	СР	BPCDT	-20080620AGL
11	WPI X	NEW YORK NY	271. 7	APP	BMPCDT	-20080620ALB
11	WPI X	NEW YORK NY	275. 8	LIC	BLCDT	-20090911ABN
11	WPCW	JEANNETTE PA	314. 7	CP MOD	BMPCDT	-20080616ABM
11	WPCW	JEANNETTE PA	314. 7	LIC	BLCDT	-20090626AAT
11	WBRE-TV	WILKES-BARRE PA	215. 7	LIC	BLCDT	-20051123AJX
11	WVPT	STAUNTON VA	264. 9	PLN	DTVPLN	-DTVP0338
11	CVIL	STAUNTON VA	218. 8	AP	BPEDT	-20111212ABK
11	MONT	STAUNTON VA	277. 7	AP	BPEDT	-20111212ABK
11	MAIN	STAUNTON VA	264. 9	AP	BPEDT	-20111212ABK
12	WHYY-TV	WILMINGTON DE	144. 0	CP MOD	BMPEDT	-20091204ADC
12	WWBT	RI CHMOND VA	216. 4	LIC	BLCDT	-20090803ABS
12	WWPX-TV	MARTI NSBURG WV	122. 2	LIC	BLCDT	-20021108AAX

Total scenarios = 8

Result key:

Scenario 1 Affected station 6

```
Results for: 11A MD BALTIMORE
                                           BPCDT
                                                      20100429AAF CP
   HAAT 299.0 m, ATV ERP 26.6 kW
                                    POPULATI ON
                                                  AREA (sq km)
   within Noise Limited Contour
                                      8596693
                                                    31809.2
                                                    29972.9
   not affected by terrain losses
                                      8300862
                                            0
                                                        0.0
   lost to NTSC IX
   lost to additional IX by ATV
                                       388635
                                                     1461.8
   lost to ATV IX only
                                       388635
                                                     1461.8
   lost to all IX
                                       388635
                                                     1461.8
 Potential Interfering Stations Included in above Scenario
                                                                   1
10A PA HARRI SBURG
                             BLCDT
                                        20040812AAH
11A NY NEW YORK
                                        20090911ABN
                             BLCDT
                                                      LIC
11A PA JEANNETTE
                             BMPCDT
                                        20080616ABM
                                                      CP
11A PA WILKES-BARRE
                             BLCDT
                                        20051123AJX
                                                      LIC
12A DE WILMINGTON
                                                      CP
                             BMPEDT
                                        20091204ADC
12A WV MARTINSBURG
                             BLCDT
                                        20021108AAX
                                                      LIC
11A VA STAUNTON
                                        DTVP0338
                             DTVPLN
                                                      PLN
After Analysis
                                                                    CP
Results for: 11A MD BALTIMORE
                                           BPCDT
                                                      20100429AAF
   HAAT 299.0 m, ATV ERP 26.6 kW
                                                  AREA (sq_km)
                                    POPULATI ON
  within Noise Limited Contour not affected by terrain losses lost to NTSC IX \,
                                                    31809.2
                                      8596693
                                                    29972.9
                                      8300862
                                            0
                                                       0.0
   lost to additional IX by ATV
                                       391579
                                                     1498.0
   lost to ATV IX only
                                       391579
                                                     1498.0
   lost to all IX
                                       391579
                                                     1498.0
 Potential Interfering Stations Included in above Scenario
                                                                   1
10A PA HARRI SBURG
                             BLCDT
                                        20040812AAH
                                                      LIC
11A NY NEW YORK
                             BLCDT
                                        20090911ABN
                                                      LIC
11A PA JEANNETTE
                                                      CP
                             BMPCDT
                                        20080616ABM
11A PA WILKES-BARRE
                             BLCDT
                                        20051123AJX
                                                      LIC
12A DE WILMINGTON
                             BMPEDT
                                        20091204ADC
                                                      CP
12A WV MARTINSBURG
                             BLCDT
                                        20021108AAX
                                                      LIC
11A VA STAUNTON
                             BPEDT
                                        20111212ABK
                                                     AΡ
Percent new IX =
                  0. 0372%
Result key:
                   10
Scenari o
                2 Affected station
Before Analysis
                                           BPCDT
                                                                    CP
Results for: 11A MD BALTIMORE
                                                      20100429AAF
   HAAT 299.0 m, ATV ERP 26.6 kW
                                                  AREA (sq km)
                                    POPULATI ON
                                                    31809. 2
   within Noise Limited Contour
                                      8596693
   not affected by terrain losses
lost to NTSC IX
                                                    29972.9
                                      8300862
                                                        0.0
   lost to additional IX by ATV
                                       388635
                                                     1461.8
   lost to ATV IX only
                                       388635
                                                     1461.8
   lost to all IX
                                       388635
                                                     1461.8
 Potential Interfering Stations Included in above Scenario
                                                                   2
10A PA HARRI SBURG
                             BLCDT
                                        20040812AAH
                                                      LIC
11A NY NEW YORK
                             BLCDT
                                        20090911ABN
                                                      LIC
11A PA JEANNETTE
                             BLCDT
                                        20090626AAT
                                                      LIC
11A PA WILKES-BARRE
                             BLCDT
                                        20051123AJX
                                                      LIC
12A DE WILMINGTON
                             BMPEDT
                                        20091204ADC
                                                      CP
12A WV MARTINSBURG
                             BLCDT
                                        20021108AAX
                                                      LIC
```

11A VA STAUNTON DTVPLN DTVP0338 PLN

After	Anal	ysi	S

After Analysis				
Results for: 11A MD BALTIMO HAAT 299.0 m, ATV ERP	26.6 kW			СР
within Noise Limited Con not affected by terrain lost to NTSC IX lost to additional IX by lost to ATV IX only lost to all IX	tour I osses ATV	DPULATI ON ARE 8596693 3 8300862 2 0 391579 391579 391579	EA (sq km) 31809.2 29972.9 0.0 1498.0 1498.0 1498.0	
Potential Interfering Stat	ions Incl	uded in above	Scenari o	2
10A PA HARRI SBURG 11A NY NEW YORK 11A PA JEANNETTE 11A PA WI LKES-BARRE 12A DE WI LMI NGTON 12A WV MARTI NSBURG 11A VA STAUNTON	BLCDT BLCDT BLCDT BLCDT BMPEDT BLCDT BPEDT	20090626AAT 20051123AJX 20091204ADC	LIC LIC LIC CP	
Percent new IX = 0.0372%				
Result key: 11 Scenario 3 Affected Before Analysis	stati on	6		
Results for: 11A MD BALTIMO HAAT 299.0 m, ATV ERP		BPCDT	20100429AAF	СР
within Noise Limited Con not affected by terrain lost to NTSC IX lost to additional IX by lost to ATV IX only lost to all IX	PO tour	PULATION ARE 8596693 3 8300862 2 0 396820 396820 396820	31809.2	
Potential Interfering Stat	ions Incl	uded in above	Scenari o	3
11A PA JEANNETTE 11A PA WILKES-BARRE	BMPCDT BLCDT BMPEDT BLCDT	20080620AGL 20090911ABN 20080616ABM 20051123AJX 20091204ADC 20021108AAX DTVP0338	CP LIC CP LIC	
After Analysis				
Results for: 11A MD BALTIMO HAAT 299.0 m, ATV ERP	26.6 kW		20100429AAF	СР
within Noise Limited Con not affected by terrain lost to NTSC IX lost to additional IX by lost to ATV IX only lost to all IX	tour I osses	8596693 3 8300862 2	EA (sq km) 31809.2 29972.9 0.0 1550.4 1550.4	
Potential Interfering Stat	ions Incl	uded in above	Scenari o	3
10A PA HARRISBURG 11A NY NEW YORK 11A PA JEANNETTE 11A PA WILKES-BARRE	BPCDT BLCDT BMPCDT BLCDT	20080620AGL 20090911ABN 20080616ABM 20051123AJX	LIC CP	

```
12A DE WILMINGTON
                             BMPEDT
                                        20091204ADC
                                                      CP
                                                     LI C
AP
12A WV MARTINSBURG
                              BLCDT
                                        20021108AAX
11A VA STAUNTON
                              BPEDT
                                        20111212ABK
Percent new IX = 0.0372\%
Result key:
                  12
                4 Affected station
Scenari o
Before Analysis
Results for: 11A MD BALTIMORE
HAAT 299.0 m, ATV ERP 26.6 kW
                                           BPCDT
                                                      20100429AAF CP
                                    POPULATI ON
                                                 AREA (sq km)
                                                  31809. 2
  within Noise Limited Contour
                                      8596693
   not affected by terrain losses
                                      8300862
                                                    29972.9
   lost to NTSC IX
                                            0
                                                        0.0
   lost to additional IX by ATV
                                       396820
                                                     1514.2
   lost to ATV IX only
                                       396820
                                                     1514.2
   lost to all IX
                                       396820
                                                     1514.2
 Potential Interfering Stations Included in above Scenario
                              BPCDT
10A PA HARRI SBURG
                                         20080620AGL
11A NY NEW YORK
                              BLCDT
                                        20090911ABN
                                                      LIC
11A PA JEANNETTE
                                        20090626AAT
                             BLCDT
                                                      LIC
11A PA WILKES-BARRE
                             BLCDT
                                        20051123AJX
                                                      LIC
12A DE WILMINGTON
12A WV MARTINSBURG
                             BMPEDT
                                        20091204ADC
                                                      CP
                              BLCDT
                                        20021108AAX
                                                      LIC
11A VA STAUNTON
                              DTVPLN
                                        DTVP0338
                                                      PLN
After Analysis
                                           BPCDT
Results for: 11A MD BALTIMORE
                                                      20100429AAF CP
   HAAT 299.0 m, ATV ERP 26.6 kW
                                    POPULATI ON
                                                  AREA (sq km)
   within Noise Limited Contour
                                      8596693
                                                    31809. 2
  not affected by terrain losses
lost to NTSC IX
lost to additional IX by ATV
                                      8300862
                                                    29972.9
                                            0
                                                        0.0
                                       399764
                                                     1550.4
   lost to ATV IX only
                                       399764
                                                     1550. 4
   lost to all IX
                                       399764
                                                     1550.4
 Potential Interfering Stations Included in above Scenario
                              BPCDT
10A PA HARRI SBURG
                                         20080620AGL
                                                      CP
11A NY NEW YORK
                              BLCDT
                                         20090911ABN
                                                      LIC
11A PA JEANNETTE
                              BLCDT
                                         20090626AAT
                                                      LIC
11A PA WILKES-BARRE
                             BLCDT
                                         20051123AJX
                                                      LIC
12A DE WILMINGTON
                             BMPEDT
                                        20091204ADC
                                                      CP
12A WV MARTINSBURG
                             BLCDT
                                        20021108AAX
                                                      LIC
11A VA STAUNTON
                              BPEDT
                                        20111212ABK
                                                      ΑP
Percent new IX = 0.0372\%
Result key:
                  13
                 5 Affected station
Scenari o
Before Analysis
Results for: 11A MD BALTIMORE
                                            BPCDT
                                                      20100429AAF CP
   HAAT 299.0 m, ATV ERP 26.6 kW
                                    POPULATI ON
                                                  AREA (sq km)
                                                    31809. 2
   within Noise Limited Contour
                                      8596693
   not affected by terrain losses
lost to NTSC IX
                                                    29972.9
                                      8300862
                                            0
                                                        0.0
   lost to additional IX by ATV
                                                     1449.7
                                       386979
   lost to ATV IX only
                                       386979
                                                     1449.7
   lost to all IX
                                       386979
                                                     1449.7
```

Potential Interfering Stati	ons Inci	uded in above	Scenario	5
10A PA HARRISBURG 11A NY NEW YORK 11A PA JEANNETTE 11A PA WILKES-BARRE 12A DE WILMINGTON 12A WV MARTINSBURG 11A VA STAUNTON	BLCDT BMPCDT BMPCDT BLCDT BMPEDT BLCDT DTVPLN	20040812AAH 20080620ALB 20080616ABM 20051123AJX 20091204ADC 20021108AAX DTVP0338	LIC APP CP LIC CP LIC PLN	
After Analysis				
Results for: 11A MD BALTIMOR HAAT 299.0 m, ATV ERP	RE 26.6 kW	BPCDT	20100429AAF	СР
within Noise Limited Con- not affected by terrain I lost to NTSC IX lost to additional IX by lost to ATV IX only lost to all IX	100	וכות וארדוות וווכוו	-/\ (ca km\	
Potential Interfering Stati				5
10A PA HARRISBURG 11A NY NEW YORK 11A PA JEANNETTE 11A PA WILKES-BARRE 12A DE WILMINGTON 12A WV MARTINSBURG 11A VA STAUNTON	BLCDT BMPCDT BMPCDT BLCDT BMPEDT BLCDT BPEDT	20040812AAH 20080620ALB 20080616ABM 20051123AJX 20091204ADC 20021108AAX 20111212ABK	LIC APP CP LIC CP LIC AP	
Percent new IX = 0.0372%				
Result key: 14 Scenario 6 Affected Before Analysis	station	6		
Results for: 11A MD BALTIMOR HAAT 299.0 m, ATV ERP within Noise Limited Cont not affected by terrain I lost to NTSC IX lost to additional IX by lost to ATV IX only lost to all IX	PO tour osses ATV	PULATI ON ARI 8596693 3 8300862 2 0 386979	-A (sa km)	СР
Potential Interfering Stati	ons Incl	uded in above	Scenari o	6
10A PA HARRISBURG 11A NY NEW YORK 11A PA JEANNETTE 11A PA WILKES-BARRE 12A DE WILMINGTON 12A WV MARTINSBURG 11A VA STAUNTON		20040812AAH 20080620ALB 20090626AAT 20051123AJX 20091204ADC 20021108AAX DTVP0338	APP LIC LIC CP	
After Analysis				
Results for: 11A MD BALTIMOR HAAT 299.0 m, ATV ERP	26.6 kW	BPCDT		СР
within Noise Limited Cont not affected by terrain I lost to NTSC IX lost to additional IX by lost to ATV IX only	tour osses	8596693	EA (sq km) 31809.2 29972.9 0.0 1486.0 1486.0	

lost to all IX 389923 1486.0 Potential Interfering Stations Included in above Scenario 10A PA HARRI SBURG BLCDT 20040812AAH IIC11A NY NEW YORK **BMPCDT** 20080620ALB APP 20090626AAT 11A PA JEANNETTE BLCDT LIC 11A PA WILKES-BARRE 20051123AJX BLCDT LIC 12A DE WILMINGTON **BMPEDT** 20091204ADC CP 12A WV MARTINSBURG BLCDT 20021108AAX LIC 11A VA STAUNTON **BPEDT** 20111212ABK AΡ Percent new IX = 0.0372%Result key: 15 7 Affected station Scenari o Before Analysis BPCDT 20100429AAF CP Results for: 11A MD BALTIMORE HAAT 299.0 m, ATV ERP 26.6 kW POPULATI ON AREA (sq km) 31809.2 within Noise Limited Contour 8596693 not affected by terrain losses 29972.9 8300862 lost to NTSC IX 0 0.0 lost to additional IX by ATV 395437 1506.1 lost to ATV IX only 395437 1506.1 lost to all IX 395437 1506.1 Potential Interfering Stations Included in above Scenario 7 10A PA HARRI SBURG **BPCDT** CP 20080620AGL 11A NY NEW YORK **BMPCDT** 20080620ALB APP 11A PA JEANNETTE **BMPCDT** 20080616ABM CP 11A PA WILKES-BARRE 20051123AJX LIC BLCDT 12A DE WILMINGTON **BMPEDT** 20091204ADC CP 12A WV MARTINSBURG BLCDT 20021108AAX LIC 11A VA STAUNTON DTVPLN DTVP0338 PLN After Analysis Results for: 11A MD BALTIMORE BPCDT 20100429AAF HAAT 299.0 m, ATV ERP 26.6 kW POPULATI ON AREA (sq km) 31809.2 within Noise Limited Contour 8596693 not affected by terrain losses lost to NTSC IX 8300862 29972.9 0.0 0 398381 1542.3 lost to additional IX by ATV lost to ATV IX only 398381 1542.3 lost to all IX 398381 1542.3 Potential Interfering Stations Included in above Scenario 7 10A PA HARRI SBURG BPCDT 20080620AGL CP 20080620ALB 11A NY NEW YORK **BMPCDT** APP 11A PA JEANNETTE **BMPCDT** 20080616ABM CP 11A PA WILKES-BARRE BLCDT 20051123AJX LIC 12A DE WILMINGTON CP **BMPEDT** 20091204ADC 12A WV MARTINSBURG BLCDT 20021108AAX LIC 11A VA STAUNTON BPEDT 20111212ABK AΡ Percent new IX = 0.0372% Result key: 16 Scenari o 8 Affected station Before Analysis Results for: 11A MD BALTIMORE BPCDT 20100429AAF CP

HAAT 299.0 m, ATV ERP 26.6 kW

```
POPULATI ON
                                               AREA (sq km)
                                                 31809. 2
   within Noise Limited Contour
                                    8596693
   not affected by terrain losses
                                                 29972.9
                                    8300862
   lost to NTSC IX
                                                     0.0
                                          O
   lost to additional IX by ATV
                                     395437
                                                  1506.1
   lost to ATV IX only
                                     395437
                                                  1506.1
   lost to all IX
                                     395437
                                                  1506. 1
 Potential Interfering Stations Included in above Scenario
                                                               8
10A PA HARRI SBURG
                            BPCDT
                                      20080620AGL
11A NY NEW YORK
                            BMPCDT
                                      20080620ALB
                                                   APP
11A PA JEANNETTE
                            BLCDT
                                      20090626AAT
                                                   LIC
11A PA WILKES-BARRE
                                      20051123AJX
                            BLCDT
                                                   LIC
12A DE WILMINGTON
                            BMPEDT
                                      20091204ADC
                                                   CP
12A WV MARTINSBURG
                                      20021108AAX
                                                   LIC
                            BLCDT
                                      DTVP0338
                                                   PLN
11A VA STAUNTON
                            DTVPLN
After Analysis
Results for: 11A MD BALTIMORE
                                         BPCDT
                                                   20100429AAF
                                                                CP
   HAAT 299.0 m, ATV ERP
                            26.6 kW
                                  POPULATI ON
                                               AREA (sq km)
   within Noise Limited Contour
                                    8596693
                                                 31809.2
                                                 29972.9
   not affected by terrain losses
                                    8300862
   lost to NTSC IX
                                                     0.0
                                          0
                                                  1542.3
   lost to additional IX by ATV
                                     398381
   lost to ATV IX only
                                     398381
                                                  1542.3
   lost to all IX
                                     398381
                                                  1542.3
 Potential Interfering Stations Included in above Scenario
                                                               8
10A PA HARRI SBURG
                            BPCDT
                                      20080620AGL
11A NY NEW YORK
                            BMPCDT
                                                   APP
                                      20080620ALB
                                      20090626AAT
11A PA JEANNETTE
                            BLCDT
                                                   LIC
11A PA WILKES-BARRE
                            BLCDT
                                      20051123AJX
                                                   LIC
12A DE WILMINGTON
                            BMPEDT
                                      20091204ADC
                                                   CP
12A WV MARTINSBURG
                            BLCDT
                                      20021108AAX
                                                   LIC
11A VA STAUNTON
                            BPEDT
                                      20111212ABK
                                                   AΡ
Percent new IX =
                    0.0372%
Worst case new IX
                     0.0372% Scenario
                                           3
Analysis of Interference to Affected Station
Analysis of current record
                           Ci ty/State
Channel
            Call
                                             Application Ref. No.
   11
           WTVI
                      CHARLOTTÉ NC
                                                BLEDT
                                                          -20101222ABA
     Stations Potentially Affecting This Station
                 Ci ty/State
Chan
      Call
                                      Dist(km) Status
                                                       Application Ref. No.
 10
      WIS
               COLUMBIA SC
                                         129. 3
                                               LIC
                                                       BLCDT
                                                                 -20090624ABZ
     WTOC-TV
               SAVANNAH GA
                                                LIC
                                                       BLCDT
                                                                  -20090622ABP
 11
                                         364. 4
 11
     WTVD
               DURHAM NC
                                         200.3
                                                LIC
                                                       BLCDT
                                                                  -20100929AGW
 11
     WJHL-TV
               JOHNSON CITY TN
                                         181.8
                                                LIC
                                                       BLCDT
                                                                  -20100910AAC
 11
     WVPT
               STAUNTON VA
                                         342.7
                                                PLN
                                                       DTVPLN
                                                                  -DTVP0338
 11
     CVIL
               STAUNTON VA
                                         358.8
                                                AΡ
                                                       BPEDT
                                                                  -20111212ABK
```

```
11
     MONT
               STAUNTON VA
                                          353.6 AP
                                                         BPEDT
                                                                   -20111212ABK
 11
      MAIN
               STAUNTON VA
                                          342.7 AP
                                                         BPEDT
                                                                   -20111212ABK
 Total scenarios = 1
Result key:
                  17
Scenari o
                1 Affected station
Before Analysis
                                                    20101222ABA LIC
Results for: 11A NC CHARLOTTE
                                          BLEDT
   HAAT 363.0 m, ATV ERP 2.6 kW
                                   POPULATI ON
                                                AREA (sq km)
                                     2322392
                                                   23534.0
   within Noise Limited Contour
   not affected by terrain losses
                                     2294540
                                                   22766.8
   lost to NTSC IX
                                           0
                                                       0.0
  lost to additional IX by ATV lost to ATV IX only
                                      146239
                                                    2645.1
                                      146239
                                                    2645.1
   lost to all IX
                                      146239
                                                    2645.1
 Potential Interfering Stations Included in above Scenario
10A SC COLUMBIA
                             BLCDT
                                       20090624ABZ
                                                    LIC
11A GA SAVANNAH
                                       20090622ABP
                                                    LIC
                             BLCDT
11A NC DURHAM
                             BLCDT
                                       20100929AGW
                                                    LIC
11A TN JOHNSON CITY
                             BLCDT
                                       20100910AAC
                                                    LIC
After Analysis
Results for: 11A NC CHARLOTTE
                                          BLEDT
                                                     20101222ABA LIC
   HAAT 363.0 m, ATV ERP 2.6 kW
                                   POPULATI ON
                                                AREA (sq km)
  within Noise Limited Contour
not affected by terrain losses
lost to NTSC IX
lost to additional IX by ATV
                                     2322392
                                                   23534.0
                                     2294540
                                                   22766.8
                                           0
                                                       0.0
                                      146239
                                                    2645.1
   lost to ATV IX only
                                                    2645.1
                                      146239
   lost to all IX
                                      146239
                                                    2645.1
 Potential Interfering Stations Included in above Scenario
                                                                 1
10A SC COLUMBIA
11A GA SAVANNAH
                             BLCDT
                                       20090624ABZ
                                                    IIC
                                       20090622ABP
                             BLCDT
                                                    LIC
11A NC DURHAM
                                       20100929AGW
                             BLCDT
                                                    LIC
11A TN JOHNSON CITY
                             BLCDT
                                       20100910AAC
                                                    LIC
11A VA STAUNTON
                             BPEDT
                                       20111212ABK
                                                    AP
Percent new IX =
                    0.0000%
                     0.0000% Scenari o
Worst case new IX
Analysis of Interference to Affected Station
Analysis of current record
                           Ci ty/State
Channel
                                              Application Ref. No.
           Call
           WTVD
                      DURHAM NČ
                                                 BLCDT -20100929AGW
   11
     Stations Potentially Affecting This Station
Chan
       Call
                 Ci ty/State
                                       Dist(km) Status Application Ref. No.
      WNCT-TV GREENVILLE NC
 10
                                          108. 4 LIC
                                                         BLCDT -20110504ACA
```

11	WTVI	CHARLOTTE NC		200. 3	LIC	BLEDT	-20101222ABA
11	WJHL-TV	JOHNSON CITY	TN	334.8	LIC	BLCDT	-20100910AAC
11	WVPT	STAUNTON VA		286. 1	PLN	DTVPLN	-DTVP0338
11	CVIL	STAUNTON VA		257. 4	AP	BPEDT	-20111212ABK
11	MONT	STAUNTON VA		312. 1	AP	BPEDT	-20111212ABK
11	MAIN	STAUNTON VA		286. 1	AP	BPEDT	-20111212ABK
12	WCTI -TV	NEW BERN NC		125. 2	LIC	BLCDT	-20090622AD0
12	WWBT	RI CHMOND VA		224. 0	LIC	BLCDT	-20090803ABS
Tota	l scenari	os = 1					
Resul Scena Befor	t key: rio e Analysi:	18 1 Affected S	stati on	8			
		1A NC DURHAM m, ATV ERP	45 O kW	BLCDT	2010	00929AGW	LIC
			DOL	PULATION A	AREA (so 51812	q km)	
no Lo	t affected st to NTS	e Limited Con d by terrain C IX	losses 3	3319437 0	50720		
Ιo	st to ATS st to ATV	itional IX by	ATV	149679 149679	4067 4067	. 3	
lo	st to all	IX		149679	4067		
Pote	ntial Int	erfering Stat	ions Inclu	ıded in abov	e Scena	ari o	1
	C GREENVI	TF	BLCDT BLEDT	20110504A0 20101222AE			
11A T	N JOHNSON C NEW BER	CITY	BLCDT	20100910AA	AC LIC		
	A STAUNTO		BLCDT DTVPLN	DTVP0338	PLN		
After	Anal ysi s						
		1A NC DURHAM m, ATV ERP	45.0 kW	BLCDT	2010	00929AGW	LIC
		e Limited Con	POF	PULATION A 3369349	AREA (so 51812		
no		d by terrain		3319437 0	50720		
lo		itional IX by	ATV	152349 152349	4131 4131	. 8	
	st to all			152349	4131		
Pote	ntial Int	erfering Stat	ions Inclu	ıded in abov	e Scena	ari o	1
	C GREENVI C CHARLOT		BLCDT BLEDT	20110504A0 20101222AE			
	N JOHNSON C NEW BER		BLCDT BLCDT	20100910AA 20090622AD			
	A STAUNTO		BPEDT	20111212AE			
Perce	nt new IX	= 0.0842%					
Worst	case new	IX 0. 0842	% Scenario) 1			

Analysis of current record Channel Call Ci ty/State JEANNETTE PA Application Ref. No. 11 WPCW **BMPCDT** -20080616ABM

Stations Potentially Affecting This Station

Chan 10	Call WOIO	City/State SHAKER HEIGHTS OH	Dist(km) 172.2	Status LIC	Application	on Ref. No. -19991110AAR
10	WOIO	SHAKER HEIGHTS OH	172. 2	СР	BPCDT	-20080620AKW
10	WVFX	CLARKSBURG WV	135. 5	LIC	BLCDT	-20090612AJY
11	WBAL-TV	BALTIMORE MD	314. 7	LIC	BLCDT	-20090619ABW
11	WBAL-TV	BALTI MORE MD	314. 7	СР	BPCDT	-20100429AAF
11	WTOL	TOLEDO OH	310. 5	LIC	BLCDT	-20090622ABU
11	WBRE-TV	WILKES-BARRE PA	356. 9	LIC	BLCDT	-20051123AJX
11	WVPT	STAUNTON VA	265. 9	PLN	DTVPLN	-DTVP0338
11	CVIL	STAUNTON VA	308. 8	AP	BPEDT	-20111212ABK
11	MONT	STAUNTON VA	241. 7	AP	BPEDT	-20111212ABK
11	MAIN	STAUNTON VA	265. 9	AP	BPEDT	-20111212ABK
12	WMFD-TV	MANSFIELD OH	221. 2	LIC	BLCDT	-20081112ALJ
12	WI CU-TV	ERIE PA	174. 5	LIC	BLCDT	-20090619ABT
12	WBOY-TV	CLARKSBURG WV	136. 9	LIC	BLCDT	-20090227ABW
12	WWPX-TV	MARTI NSBURG WV	202. 5	LIC	BLCDT	-20021108AAX
Prop	osal caus	es no interference				

Analysis of Interference to Affected Station 10

Analysis of current record

Application Ref. No. BLCDT -20090626AAT Ci ty/State JEANNETTE PA Channel Call 11 WPCW

Chan 10	Call WOIO	City/State SHAKER HEIGHTS OH	Dist(km) 172.2		Application BLCDT	on Ref. No. -19991110AAR
10	WOIO	SHAKER HEIGHTS OH	172. 2	CP	BPCDT	-20080620AKW
10	WVFX	CLARKSBURG WV	135. 5	LIC	BLCDT	-20090612AJY
11	WBAL-TV	BALTI MORE MD	314. 7	LIC	BLCDT	-20090619ABW
11	WBAL-TV	BALTI MORE MD	314. 7	СР	BPCDT	-20100429AAF
11	WTOL	TOLEDO OH	310. 5	LIC	BLCDT	-20090622ABU

11	WBRE-TV	WILKES-BARRE PA	356. 9	LIC	BLCDT	-20051123AJX
11	WVPT	STAUNTON VA	265. 9	PLN	DTVPLN	-DTVP0338
11	CVIL	STAUNTON VA	308.8	AP	BPEDT	-20111212ABK
11	MONT	STAUNTON VA	241. 7	AP	BPEDT	-20111212ABK
11	MAIN	STAUNTON VA	265. 9	AP	BPEDT	-20111212ABK
12	WMFD-TV	MANSFIELD OH	221. 2	LIC	BLCDT	-20081112ALJ
12	WI CU-TV	ERIE PA	174. 5	LIC	BLCDT	-20090619ABT
12	WBOY-TV	CLARKSBURG WV	136. 9	LIC	BLCDT	-20090227ABW
12	WWPX-TV	MARTI NSBURG WV	202. 5	LIC	BLCDT	-20021108AAX
_		6				

Proposal causes no interference

Analysis of Interference to Affected Station 11

Analysis of current record
Channel Call City/State Application Ref. No.
11 WBRE-TV WILKES-BARRE PA BLCDT -20051123AJX

Stations Potentially Affecting This Station

Chan 10	Call WHTM-TV	Ci ty/State HARRI SBURG PA	Dist(km) 132.3		Application	on Ref. No. -20040812AAH
10	WHTM-TV	HARRI SBURG PA	132. 3	СР	BPCDT	-20080620AGL
11	WWLP	SPRINGFIELD MA	281. 8	LIC	BLCDT	-20090612AJV
11	WBAL-TV	BALTI MORE MD	215. 7	LIC	BLCDT	-20090619ABW
11	WBAL-TV	BALTI MORE MD	215. 7	СР	BPCDT	-20100429AAF
11	WPI X	NEW YORK NY	164. 7	APP	BMPCDT	-20080620ALB
11	WPI X	NEW YORK NY	165. 6	LIC	BLCDT	-20090911ABN
11	WPCW	JEANNETTE PA	356. 9	CP MOD	BMPCDT	-20080616ABM
11	WPCW	JEANNETTE PA	356. 9	LIC	BLCDT	-20090626AAT
11	CVIL	STAUNTON VA	420. 0	AP	BPEDT	-20111212ABK
12	WHYY-TV	WILMINGTON DE	137. 7	CP MOD	BMPEDT	-20091204ADC
12	WNYT	ALBANY NY	222. 4	LIC	BLCDT	-20100505AHT
11	MONT	STAUNTON VA		AP	BPEDT	-20111212ABK
11	MAIN	STAUNTON VA		AP	BPEDT	-20111212ABK

Proposal causes no interference

Analysis of current record

City/State JOHNSON CITY TN Application Ref. No. BLCDT -20100910AAC Channel Call 11 WJHL-TV

Stations Potentially Affecting This Station

Chan 10	Call WBIR-TV	City/State KNOXVILLE TN	Dist(km) 168.4	Status LIC	Application	on Ref. No. -20090619ADG
10	WSWP-TV	GRANDVI EW WV	191. 9	LIC	BLEDT	-20100210AAQ
10	WSWP-TV	GRANDVI EW WV	191. 9	APP	BDSTA	-20080225AGT
11	WHAS-TV	LOUI SVI LLE KY	391. 2	LIC	BLCDT	-20100628AWQ
11	WTVI	CHARLOTTE NC	181. 8	LIC	BLEDT	-20101222ABA
11	WTVD	DURHAM NC	334. 8	LIC	BLCDT	-20100929AGW
11	WVPT	STAUNTON VA	315. 3	PLN	DTVPLN	-DTVP0338
11	CVIL	STAUNTON VA	366. 5	AP	BPEDT	-20111212ABK
11	MONT	STAUNTON VA	309. 1	AP	BPEDT	-20111212ABK
11	MAIN	STAUNTON VA	315. 3	AP	BPEDT	-20111212ABK
12	WYMT-TV	HAZARD KY	125. 7	LIC	BLCDT	-20040109ACY

Total scenarios = 1

Result key: Scenario Before Analysis 19 1 Affected station 12

Results for: 11A TN JOHNSON CITY	BLCDT	20100910AAC	LIC
HAAT 708.0 m, ATV ERP 34.5 k	kW		
	POPULATI ON	AREA (sq km)	
within Noise Limited Contour	2087406	49236.0	
not affected by terrain losses	1454882	37319. 6	
lost to NTSC IX	0	0. 0	
lost to additional IX by ATV	106181	1909. 4	
lost to ATV IX only	106181	1909. 4	
lost to all IX	106181	1909. 4	

Potential Interfering Stations Included in above Scenario

10A TN	KNOXVI LLE	BLCDT	20090619ADG	LIC
11A KY	LOUI SVI LLE	BLCDT	20100628AWQ	LIC
11A NC	CHARLOTTE	BLEDT	20101222ABA	LIC
11A NC	DURHAM	BLCDT	20100929AGW	LIC
12A KY	HAZARD	BLCDT	20040109ACY	LIC
11A VA	STAUNTON	DTVPLN	DTVP0338	PLN

After Analysis

Results for: 11A TN JOHNSON CITY HAAT 708.0 m. ATV ERP 34.5	BLCDT	20100910AAC	LIC
,	POPULATI ON	AREA (sq km)	
within Noise Limited Contour not affected by terrain losses		49236. 0 37319. 6	
lost to NTSC IX	0	0.0	
lost to additional IX by ATV	106395	1921. 5	
lost to ATV IX only	106395	1921. 5	

lost to all IX 106395 1921.5

Potential Interfering Stations Included in above Scenario 1

KNOXVI LLE	BLCDT	20090619ADG	LIC
LOUI SVI LLE	BLCDT	20100628AWQ	LIC
CHARLOTTE	BLEDT	20101222ABA	LIC
DURHAM	BLCDT	20100929AGW	LIC
HAZARD	BLCDT	20040109ACY	LIC
STAUNTON	BPEDT	20111212ABK	AP
	KNOXVI LLE LOUI SVI LLE CHARLOTTE DURHAM HAZARD STAUNTON	LOUI SVI LLE CHARLOTTE DURHAM HAZARD BLCDT BLCDT	LOUI SVI LLE BLCDT 20100628AWQ CHARLOTTE BLEDT 20101222ABA DURHAM BLCDT 20100929AGW HAZARD BLCDT 20040109ACY

Percent new IX = 0.0159%

Worst case new IX 0.0159% Scenario 1

Analysis of Interference to Affected Station 13

Analysis of current record

Channel Call City/State Application Ref. No.
12 WWBT RICHMOND VA BLCDT -20090803ABS

Stations Potentially Affecting This Station

Chan 11	Call WBAL-TV	City/State BALTIMORE MD	Dist(km) 216.4	Status LIC	Application BLCDT	on Ref. No. -20090619ABW
11	WBAL-TV	BALTIMORE MD	216. 4	СР	BPCDT	-20100429AAF
11	WTVD	DURHAM NC	224. 0	LIC	BLCDT	-20100929AGW
11	WVPT	STAUNTON VA	175. 0	PLN	DTVPLN	-DTVP0338
11	CVIL	STAUNTON VA	101. 2	AP	BPEDT	-20111212ABK
11	MONT	STAUNTON VA	205.8	AP	BPEDT	-20111212ABK
11	MAIN	STAUNTON VA	175. 0	AP	BPEDT	-20111212ABK
12	WHYY-TV	WILMINGTON DE	343. 3	CP MOD	BMPEDT	-20091204ADC
12	WCTI -TV	NEW BERN NC	267. 4	LIC	BLCDT	-20090622AD0
12	WBOY-TV	CLARKSBURG WV	315. 7	LIC	BLCDT	-20090227ABW
12	WWPX-TV	MARTI NSBURG WV	222. 3	LIC	BLCDT	-20021108AAX
13	WJZ-TV	BALTI MORE MD	216. 4	СР	BPCDT	-20110810AAL
13	WJZ-TV	BALTI MORE MD	216. 4	LIC	BLCDT	-20090727ADD
13	WVEC	HAMPTON VA	119. 5	LIC	BLCDT	-20090612AJJ
13	WSET-TV	LYNCHBURG VA	189. 4	LIC	BLCDT	-20091013ABE

Proposal causes no interference

Analysis of Interference to Affected Station 14

Analysis of current record Channel Call City/State

Stations Potentially Affecting This Station

Chan 11	Call WPCW	Ci ty/State JEANNETTE PA	Dist(km) 136.9	Status CP MOD	Application BMPCDT	on Ref. No. -20080616ABM
11	WPCW	JEANNETTE PA	136. 9	LIC	BLCDT	-20090626AAT
11	WVPT	STAUNTON VA	152. 5	PLN	DTVPLN	-DTVP0338
11	CVIL	STAUNTON VA	215. 9	AP	BPEDT	-20111212ABK
11	MONT	STAUNTON VA	122. 3	AP	BPEDT	-20111212ABK
11	MAIN	STAUNTON VA	152. 5	AP	BPEDT	-20111212ABK
12	WYMT-TV	HAZARD KY	340. 6	LIC	BLCDT	-20040109ACY
12	WKRC-TV	CINCINNATI OH	359. 9	LIC	BLCDT	-20090622AFI
12	WMFD-TV	MANSFIELD OH	254. 8	LIC	BLCDT	-20081112ALJ
12	WI CU-TV	ERIE PA	310. 1	LIC	BLCDT	-20090619ABT
12	WWBT	RI CHMOND VA	315. 7	LIC	BLCDT	-20090803ABS
12	WWPX-TV	MARTI NSBURG WV	195. 6	LIC	BLCDT	-20021108AAX
13	WQED	PITTSBURGH PA	132. 8	LIC	BLEDT	-20091127ABD
13	WSET-TV	LYNCHBURG VA	227. 2	LIC	BLCDT	-20091013ABE
13	WOWK-TV	HUNTI NGTON WV	184. 2	LIC	BLCDT	-20090227ABU
_						

Proposal causes no interference

Analysis of Interference to Affected Station 15

Analysis of current record
Channel Call City/State Application Ref. No.
12 WWPX-TV MARTINSBURG WV BLCDT -20021108AAX

Chan 11	Call WBAL-TV	City/State BALTIMORE MD	Dist(km) 122.2		Application	on Ref. No. -20090619ABW
11	WBAL-TV	BALTIMORE MD	122. 2	СР	BPCDT	-20100429AAF
11	WPCW	JEANNETTE PA	202. 5	CP MOD	BMPCDT	-20080616ABM
11	WPCW	JEANNETTE PA	202. 5	LIC	BLCDT	-20090626AAT
11	WVPT	STAUNTON VA	179. 9	PLN	DTVPLN	-DTVP0338
11	CVIL	STAUNTON VA	167.8	AP	BPEDT	-20111212ABK
11	MONT	STAUNTON VA	181. 3	AP	BPEDT	-20111212ABK
11	MAIN	STAUNTON VA	179. 9	AP	BPEDT	-20111212ABK
12	WHYY-TV	WILMINGTON DE	250. 0	CP MOD	BMPEDT	-20091204ADC

12	WMFD-TV	MANSFIELD OH	413. 3	LIC	BLCDT	-20081112ALJ
12	WI CU-TV	ERIE PA	332. 6	LIC	BLCDT	-20090619ABT
12	WWBT	RI CHMOND VA	222. 3	LIC	BLCDT	-20090803ABS
12	WBOY-TV	CLARKSBURG WV	195. 6	LIC	BLCDT	-20090227ABW
13	WJZ-TV	BALTIMORE MD	122. 2	CP	BPCDT	-20110810AAL
13	WJZ-TV	BALTI MORE MD	122. 2	LIC	BLCDT	-20090727ADD
13	WQED	PITTSBURGH PA	195. 6	LIC	BLEDT	-20091127ABD

Proposal causes no interference

Analysis of Interference to Affected Station 16

Analysis of current record DTS STATION

Call Ci ty/State Channel Application Ref. No. 11 MAIN STAUNTON VA BPEDT -20111212ABK

Stations Potentially Affecting This Station

Chan 10	Call WVFX	City/State CLARKSBURG WV	Dist(km) 154.6	Status LIC	Application	on Ref. No. -20090612AJY
10	WSWP-TV	GRANDVI EW WV	149. 7	LIC	BLEDT	-20100210AAQ
10	WSWP-TV	GRANDVI EW WV	149. 7	APP	BDSTA	-20080225AGT
11	WBAL-TV	BALTIMORE MD	264. 9	LIC	BLCDT	-20090619ABW
11	WBAL-TV	BALTIMORE MD	264. 9	СР	BPCDT	-20100429AAF
11	WTVI	CHARLOTTE NC	342.7	LIC	BLEDT	-20101222ABA
11	WTVD	DURHAM NC	286. 1	LIC	BLCDT	-20100929AGW
11	WPCW	JEANNETTE PA	265. 9	CP MOD	BMPCDT	-20080616ABM
11	WPCW	JEANNETTE PA	265. 9	LIC	BLCDT	-20090626AAT
11	WJHL-TV	JOHNSON CITY TN	315. 3	LIC	BLCDT	-20100910AAC
12	WWBT	RI CHMOND VA	175. 0	LIC	BLCDT	-20090803ABS
12	WBOY-TV	CLARKSBURG WV	152. 5	LIC	BLCDT	-20090227ABW
12	WWPX-TV	MARTI NSBURG WV	179. 9	LIC	BLCDT	-20021108AAX

DTS Site number 03 for station 20111212ABK Channel 11 Call MAIN City/State STAUNTON VA

Fails the service area limitations as noted below $\ ^{***}$ Note this comparison is for the current 3.2 kW license, WVPT has a CP for 10 kW and has applied for a

This DTS system uses EWVPT Main as 10 kW, thus there no excursions beyond limits. ****

AZIMUTH (DEGREES) EXCURSION DISTANCE KM 221. 25 0.25

```
221. 50
                                 0.29
        221.75
                                 0.28
        222.00
                                  0.33
        222.25
                                 0.39
        222.50
                                 0.43
        222.75
                                 0.41
        223.00
                                 0.47
        223.25
                                 0.50
        223.50
                                 0.57
        223.75
                                 0.58
        224. 00
224. 25
                                 0.64
                                 0.66
        224.50
                                 0. 66
        224.75
                                 0.79
                                 0.79
        225.00
                                 0.79
        225.25
        225. 50
225. 75
                                 0.85
                                 0.88
        226.00
                                 0.94
        226. 25
226. 50
                                 1.00
                                 0.97
                                 1.05
        226. 75
        227.00
                                 1. 14
        227.25
                                 1.11
        227.50
                                 1. 17
        227.75
                                 1.14
        228.00
                                 1. 23
                                 1. 29
        228. 25
        228. 50
228. 75
                                  1.39
                                 1.38
        229.00
                                 1.43
        229.25
                                 1.43
        229. 50
                                 1.47
        229.75
                                 1. 51
        230.00
                                 1.51
        230. 25
                                 1.41
        230.50
                                 1.30
        230.75
                                 1. 24
1. 28
        231.00
        231.25
                                 1.21
        231.50
                                 1.09
        231.75
                                 1.08
        232.00
                                 1.05
        232.25
                                 0.92
        232. 50
                                 0.86
        232.75
                                 0.77
        233.00
                                 0.71
        233.25
                                 0.61
        233.50
                                 0.46
        233.75
                                 0.42
        234.00
                                 0.34
DTS fails to cover non-DTS served area
        7 Cells unserved
 Total scenarios =
Result key:
                  1 Affected station 16
Scenari o
Before Analysis
Results for: 11A VA STAUNTON
HAAT 328.0 m, ATV ERP 0.1 kW
                                              BPEDT
                                                           20111212ABK AP
                                                      AREA (sq km)
                                       POPULATI ON
                                                         27162. 4
24347. 4
   within Noise Limited Contour
                                          876240
```

731286

0

0.0

not affected by terrain losses

lost to NTSC IX

lost to additional IX by lost to ATV IX only lost to all IX	ATV	47000 47000 47000	1523. 5 1523. 5 1523. 5	
Potential Interfering Stati	ions Inclu	ded in above	Scenari o	1
11A MD BALTIMORE 11A NC CHARLOTTE 11A NC DURHAM 11A TN JOHNSON CITY	BLCDT	20100929AGW	LI C LI C	
Result key: 21 Scenario 2 Affected Before Analysis	station	16		
Results for: 11A VA STAUNTON HAAT 328.0 m, ATV ERP	0.1 kW POP	ULATI ON ARE		АР
within Noise Limited Con- not affected by terrain I lost to NTSC IX lost to additional IX by lost to ATV IX only	l osses	731286 2 0 50777 50777	27162. 4 24347. 4 0. 0 1783. 4 1783. 4	
lost to all IX		50777	1783. 4	
Potential Interfering Stati	ions Inclu	ded in above	Scenari o	2
11A MD BALTIMORE 11A NC CHARLOTTE 11A NC DURHAM 11A TN JOHNSON CITY	BLCDT	20100929AGW	LI C LI C	

FINISHED FINISHED FINISHED FINISHED FINISHED

Summary Study

Percent allowed new interference: 0.500

Percent allowed new interference to non Class A LPTV: 2.000

Census data selected 2000

Data Base Selected

./data_files/pt_tvdb.sff
TV INTERFERENCE and SPACING ANALYSIS PROGRAM

Date: 12-14-2011 Time: 16:21:58

Record Selected for Analysis (Record is a DTS)

VA US BPEDT -20111212ABK STAUNTON

Channel 11 ERP 0.10 HAAT 00328 m RCAMSL 00495 m kW

Lati tude 037-59-00 Longi tude 0078-29-02

Status AP Zone 1 Border Site number: 01 Dir Antenna Make CDB Model 0000000078975 Beam tilt N Ref Azimuth 0.0

Elevation Antenna Pattern ID: 123

Last update 00000000 Cutoff date 00000000 Docket

Comments

Applicant SHENANDOAH VALLEY EDUCATIONAL TELEVI

-20111212ABK **STAUNTON** MONT BPEDT VA US

Channel 11 ERP 0.01 HAAT 00457 m RCAMSL 01338 m kW

Latitude 038-20-39 Longitude 0079-35-47

Status AP Zone 1 Border Site number: 02 Dir Antenna Make CDB Model 0000000077677 Beam tilt N Ref Azimuth 345.0

Elevation Antenna Pattern ID: 124

Last update 00000000 Cutoff date 00000000 Docket

Comments

Applicant SHENANDOAH VALLEY EDUCATIONAL TELEVI

BPEDT MAIN -20111212ABK **STAUNTON** VA US

Channel 11 ERP 10.0 kW HAAT 00680 m RCAMSL 01333 m

Latitude 038-09-54 Longitude 0079-18-51

Status AP Zone 1 Border Site number: 03

Dir Antenna Make CDB Model 0000000107753 Beam tilt N Ref Azimuth 0.0

Elevation Antenna Pattern ID: 122

Last update 00000000 Cutoff date 00000000

Comments

Applicant SHENANDOAH VALLEY EDUCATIONAL TELEVI

Cell Size for Service Analysis 2.0 km/side

Distance Increments for Longley-Rice Analysis 1.00 km

Facility (site # 01) meets maximum height/power limits

Facility (site # 02) meets maximum height/power limits

Facility (site # 03) does not meet maximum height/power limits Channel 11 ERP = 10.00 HAAT = 680.

Site number 1

Azi muth ERP HAAT 36.0 dBu F(50, 90) (kW) (Deg) (m) (km)

0. 0 45. 0 90. 0 135. 0 180. 0 225. 0 270. 0	0. 098 0. 029 0. 000 0. 001 0. 000 0. 001 0. 000	357. 1 264. 2 378. 9 353. 7 350. 8 324. 8 273. 5	61. 1 46. 6 16. 9 29. 6 21. 3 28. 5 13. 9
315. 0	0. 029	321.6	50. 0

Site number	r 2		
Azi muth	ERP	HAAT	36.0 dBu F(50, 90)
(Deg)	(kW)	(m)	(km)
0. Ō	0. 008	401. 6	44. 5
45. 0	0.000	268. 2	13. 8
90. 0	0.000	570. 8	20. 9
135. 0	0.000	651. 1	23. 0
180. 0	0.000	580. 4	21. 2
225. 0	0.000	497. 9	19. 0
270. 0	0.000	386. 1	17. 1
315. 0	0.004	320. 9	34. 3

Database HAAT does not agree with computed HAAT Database HAAT: 457 Computed HAAT: 460

Site number	- 3		
Azi muth	ERP	HAAT	36.0 dBu F(50, 90)
(Deg)	(kW)	(m)	(km)
0. 0	0.009	685.0	57. 2
45. 0	0. 649	683. 0	92. 0
90. 0	7.043	778. 4	114. 3
135. 0	6. 071	709. 4	111. 5
180. 0	5. 173	722. 7	110. 4
225. 0	5. 762	619. 0	108. 4
270. 0	0. 049	657. 0	69. 8
315. 0	0. 006	609. 3	52. 2

Database HAAT does not agree with computed HAAT Database HAAT: 680 Computed HAAT: 683

Evaluation toward Class A Stations from site # 01

No Spacing violations or contour overlap to Class A stations from site # 01

Evaluation toward Class A Stations from site # 02

No Spacing violations or contour overlap to Class A stations from site # 02

Evaluation toward Class A Stations from site # 03

No Spacing violations or contour overlap to Class A stations from site # 03

Class A Evaluation Complete

SPACING VIOLATION FOUND BETWEEN STATION

CVIL 11 STAUNTON VA BPEDT 20111212ABK Site # 01

and station

SHORT TO: WBAL-TV 11 BALTIMORE MD BLCDT 20090619ABW

039-20- 5 0076-39- 3

Req. separation 244.6 Actual separation 219.0 Short 25.6 km

SHORT TO: WBAL-TV 11 BALTIMORE 039-20- 5 0076-39- 3 MD BPCDT 20100429AAF

Req. separation 244.6 Actual separation 219.0 Short 25.6 km

SHORT TO: WVPT 11 STAUNTON VA BPEDT 20081022ABK

038-09-54 0079-18-51

Req. separation 244.6 Actual separation 75.6 Short 169.0 km

SHORT TO: WVPT 11 38 -09-54 79 -18-51 VA DTVPLN DTVP0338 11 STAUNTON

Req. separation 244.6 Actual separation 75.6 Short 169.0 km

SHORT TO: WVPT 11 STAUNTON VA BLEDT 20021220ADX

038-09-54 0079-18-51

Req. separation 244.6 Actual separation 75.6 Short 169.0 km

SHORT TO: WWBT 12 RI CHMOND VA BLCDT 20090803ABS

037-30-23 0077-30-12

Req. separation \Rightarrow 20.0 \iff 110.0 Actual separation 101.3 Short 8.7(81.3)

SPACING VIOLATION FOUND BETWEEN STATION

MONT 11 STAUNTON VA BPEDT 20111212ABK Site # 02

and station

SHORT TO: WPCW 11 JEANNETTE PA BMPCDT 20080616ABM

040-29-38 0080-01- 9

Req. separation 244.6 Actual separation 241.4 Short 3.2 km

SHORT TO: WPCW 11 JEANNETTE PA BLCDT 20090626AAT

040-29-38 0080-01- 9

Reg. separation 244.6 Actual separation 241.4 Short 3.2 km

11 STAUNTON VA BPEDT 20081022ABK

SHORT TO: WVPT 11 038-09-54 0079-18-51

Req. separation 244.6 Actual separation 31.7 Short 212.9 km

SHORT TO: WVPT 11 STAUNTON VA DTVPLN **DTVP0338** 38 -09-54 79 -18-51 Req. separation 244.6 Actual separation 31.7 Short 212.9 km

SHORT TO: WVPT 11 STAUNTON VA BLEDT 20021220ADX 038-09-54 0079-18-51 Req. separation 244.6 Actual separation 31.7 Short 212.9 km

SPACING VIOLATION FOUND BETWEEN STATION

MAIN 11 STAUNTON VA BPEDT 20111212ABK Site # 03

and station

SHORT TO: WVPT 11 STAUNTON VA BPEDT 20081022ABK 038-09-54 0079-18-51

Req. separation 244.6 Actual separation 0.0 Short 244.6 km

Req. separation 244.6 Actual separation 0.0 Short 244.6 km

SHORT TO: WVPT 11 STAUNTON VA BLEDT 20021220ADX 038-09-54 0079-18-51

Req. separation 244.6 Actual separation 0.0 Short 244.6 km

Checks to Site Number 01

Proposed facility OK to FCC Monitoring Stations

Proposed facility OK toward West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Proposed station is OK toward AM broadcast stations

Checks to Site Number 02

Proposed facility OK to FCC Monitoring Stations

Proposed facility within West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Proposed station is OK toward AM broadcast stations

Checks to Site Number 03

Proposed facility OK to FCC Monitoring Stations

Proposed facility within West Virginia quiet zone

Proposed facility OK toward Table Mountain

Proposed facility is beyond the Canadian coordination distance

Proposed facility is beyond the Mexican coordination distance

Proposed station is OK toward AM broadcast stations

Start of Interference Analysis

Proposed Station
Channel Call City/State ARN
11 CVIL STAUNTON VA BPEDT 20111212ABK

Stations Potentially Affected by Proposed Station

Chan 10	Call WAZT-CA	City/State WOODSTOCK VA	Dist(km) 109.1	Status LIC	Application	on Ref. No. 20030718ADF
10	WVFX	CLARKSBURG WV	217. 9	LIC	BLCDT	20090612AJY
10	WSWP-TV	GRANDVI EW WV	219. 8	LIC	BLEDT	20100210AAQ
10	WSWP-TV	GRANDVI EW WV	219. 8	APP	BDSTA	20080225AGT
11	WBAL-TV	BALTI MORE MD	218. 8	LIC	BLCDT	20090619ABW
11	WBAL-TV	BALTIMORE MD	218. 8	СР	BPCDT	20100429AAF
11	WTVI	CHARLOTTE NC	358. 8	LIC	BLEDT	20101222ABA
11	WTVD	DURHAM NC	257. 4	LIC	BLCDT	20100929AGW
11	WPCW	JEANNETTE PA	308.8	CP MOD	BMPCDT	20080616ABM
11	WPCW	JEANNETTE PA	308.8	LIC	BLCDT	20090626AAT
11	WBRE-TV	WILKES-BARRE PA	420. 0	LIC	BLCDT	20051123AJX
11	WJHL-TV	JOHNSON CITY TN	366. 5	LIC	BLCDT	20100910AAC
12	WWBT	RI CHMOND VA	101. 2	LIC	BLCDT	20090803ABS
12	WBOY-TV	CLARKSBURG WV	215. 9	LIC	BLCDT	20090227ABW
12	WWPX-TV	MARTI NSBURG WV	167. 8	LIC	BLCDT	20021108AAX

Study of this proposal found the following interference problem(s):

DTS Site number 03 for station 20111212ABK Channel 11 Call MAIN City/State STAUNTON Fails the service area limitations

VA

DTS fails to cover non-DTS served area 7 Cells unserved

*** Note, as explained in the full text for this study, the OET-60 DTV

analysis program compares the proposed DTS service area with the 3.2 kW WVPT service area. This sytem proposes the use of WVPT 10 kW C.P. which as this data is in the process of being licensed.

NATIONAL RADIO ASTRONOMY OBSERVATORY

POST OFFICE BOX 2 GREEN BANK, WV 24944-0002 NRQZ OFFICE TELEPHONE (304) 456-2107 HTTP://WWW.GB.NRAO.EDU/

FAX (304) 456-2276 NRQZ@NRAO.EDU

March 16, 2012 Page 1 of 3

NRQZ ID: 753819DEC2011

Shenandoah Valley Educational Television Corporation 298 Port Republic Rd. Harrisonburg, Virginia 22801-3052

Application Reason/Purpose File/Docket/Assignment # Applicant Name Call Sign Site Name or Loc Frequency Coordinator Previous Evaluations NRAO Coordination

Pre-coordination of existing call signs Shall be provided by the applicant Addressee WVPT

See exhibit A Not required Various

NRQZ ID 7538/19 December 2011

Dear Applicant:

The National Radio Quiet Zone (NRQZ) office evaluated the proposed facilities as shown in exhibit A to determine the possible interference impact on our highly sensitive radio astronomy operations.

SPECIAL CONDITION

The National Radio Astronomy Observatory (NRAO), Green Bank, WV, objects unless and until the special condition of the **Monterey** station license limit the effective radiated power to 0.0014 watts DTV at Azimuth 295 degrees True.

To meet this special condition, the applicant shall:

- 1. Use the final engineering submitted by Doug Vernier on 13 March 2012 indicating that the site will meet the requested ERPd limit.
- Arrange for a site inspection to verify implementation of the submitted and approved engineering.

The NRAO has no objection to the Elliott Knob facility as submitted, which indicated no change to the previously approved analysis under NRQZ ID 3563-2; therefore, this location is grandfathered.

Regulatory

The NRQZ office requests that:

- 1. The FCC places a special condition on the station license.
- 2. This Letter of Concurrence be attached to the FCC application.
- 3. The applicant provides the NRQZ office notice of their official filing with the FCC per section 47CFR1.924 (a) (2).

NATIONAL RADIO ASTRONOMY OBSERVATORY

POST OFFICE BOX 2 GREEN BANK, WV 24944-0002 NRQZ OFFICE TELEPHONE (304) 456-2107 HTTP://WWW.GB.NRAO.EDU/

FAX (304) 456-2276 NRQZ@NRAO.EDU

March 16, 2012 Page 2 of 3

NRQZ ID: 753819DEC2011

The National Radio Astronomy Observatory, Green Bank, WV, has no objections provided the special condition is met.

The Sugar Grove Research Station, Sugar Grove, WV has no objections.

This letter constitutes coordination of assignment in the National Radio Quiet Zone as required by the FCC Rules and Regulations 47CFR1.924.

If I can be of assistance, please feel free to contact me.

Sincerely

Paulette W. Woody Interference Office NRQZ Administrator

PWW:pww

CC:

Doug Vernier okay

File:

7538.doc

Attachment:

Exhibit "A"

NATIONAL RADIO ASTRONOMY OBSERVATORY

POST OFFICE BOX 2 GREEN BANK, WV 24944-0002 NRQZ OFFICE TELEPHONE (304) 456-2107 HTTP://WWW.GB.NRAO.EDU/

FAX (304) 456-2276 NRQZ@NRAO.EDU

March 16, 2012 Page 3 of 3

NRQZ ID: 753819DEC2011

Exhibit "A"

Site Name or Loc Nearest City/State N Latitude W Longitude Ground Elevation (m) Frequency (MHz) Emission Designator Antenna 1 Type (Gain dBi) Height agl (m) Orientation (degT)

Elliott Knob Staunton Virginia 38 09 54.47 79 18 50.13 1322.8 201 Digital TV On file 10 150° true with 1° electrical tilt

Site Name or Loc Nearest City/State N Latitude W Longitude Ground Elevation (m) Frequency (MHz) Emission Designator Antenna 1 Type (Gain dBi) Height agl (m) Orientation (degT) Monterey Monterey Virginia 38 20 39 79 35 47 1338 201 Digital TV Scala C L-713, 9 dBd 42.9 355° true

WVPT DTS System Sites

WVPT-TV (CP)

BLEDT20021220ADX Latitude: 38-09-54 N Longitude: 079-18-51 W ERP: 10.00 kW

Channel: 11 Frequency: 201.0 MHz AMSL Height: 1333.0 m

WVPT-TV

BPEDT20081022ABK Latitude: 38-09-54 N Longitude: 079-18-51 W ERP: 3,20 kW

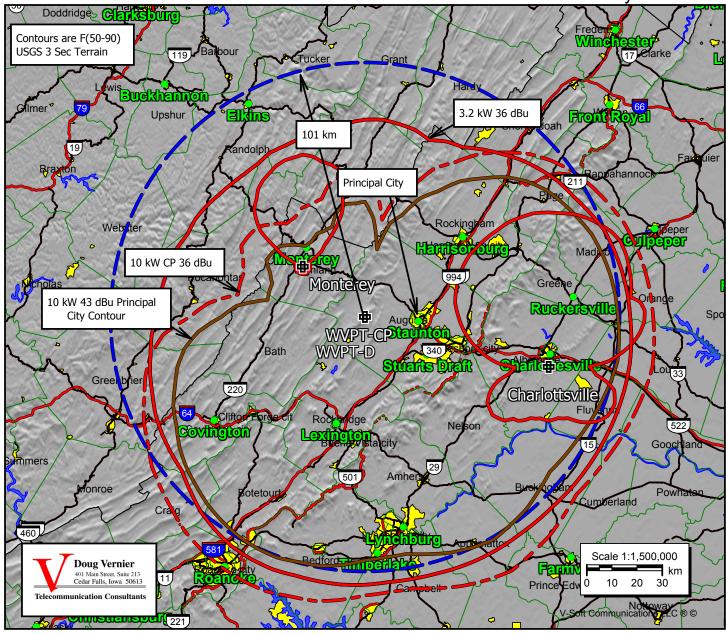
Channel: 11

Frequency: 201.0 MHz AMSL Height: 1333.0 m

Charlottsville

Latitude: 37-59-00 N Longitude: 078-29-02 W

ERP: 0.10 kW Channel: 11


Frequency: 201.0 MHz AMSL Height: 495.0 m

Monterey

Latitude: 38-20-39 N Longitude: 079-35-47 W ERP: 0.008 kW

Channel: 11

Frequency: 201.0 MHz AMSL Height: 1338.0 m

Environmental Exhibit

WVPT-TV DTS

System Shenandoah Valley Educational TV Corporation

WVPT-TV - Channel 11, 10 kW H, DA

The proposed antenna will be located at the Elliott Knob transmitter site. This is an isolated Forestry controlled antenna site having high elevation, overlooking a wide expanse of terrain with a rapid fall off of elevation in the direction of the proposed major lobe.

The site is at the top of a long winding 4-5 mile steep road up the mountain. There is a gate under lock and key at the start of this road with warning signs posted. Consequently, the site is off limits to the public and can be considered "controlled." The applicant's DTV and analog TV are located atop the mountain. There is an LPTV and an FM station also at the site.

Based on the formulas expressed in the OET Bulletin, No. 65, August 1997 as amended, Evaluating Compliance with FCC guidelines for Human Exposure to Radio Frequency Electronic Magnetic Fields", published by the Federal Communications Commission's Office of Science and Engineering, the proposed 10 kW facility, centered at 201 MHz, with its antenna radiation center 10 meters above ground level, is predicted to produce a maximum power density at a position 2 meters above the tower base (head level) of 208.8 microwatts per square centimeter, which is 20.9 percent of the 1000 microwatt per square centimeter maximum. (Relative Field = 0.2) The proposed antenna has a depression angle of 30.3 degrees to the location of the steep drop-off which is located 13.7 meters in the front of the antenna. Based on the manufacturer's vertical elevation field, this location is within the first null. (See attachment A.) The RF density at head height at this null of relative field 0.025 is 3.39 microwatts per square centimeter. This is only 0.34 percent of the maximum. At a distance of 6.85 meters from the antenna base, or half-way between the antenna base and the drop-off, the depression angle becomes 50.9 degrees. Though the manufacturer's relative field graph ends at a depression angle of 30 degrees, if we use the OET 69 referenced high gain antenna relative field of 0.2, we get the same value as is found directly beneath the antenna. Consequently, the focus of the channel 11 beam is well off the mountain top at an area that cannot be reached by site engineers. Even so, the applicant has placed warning signs directly in front of the antenna. The power off the back of the antenna is 0.32 kW (see the proposed azimuth pattern in attachment B.) This produces 0.668 microwatts per square centimeter, assuming a relative field of 0.2. This is only 0.067 percent of the maximum.

WHSV-TV operates a DTS station from this site using the old WVPT channel 51 antenna. This antenna is a unique "billboard" antenna design which now operates at an ERP of 0.5 kW. This antenna also has its center at 10 meters above the ground. Considering the manufacturer's vertical elevation field graph of 0.02 (see attachment C,) the field of this antenna is also at a null at a depression angle of approximately 28.5 degrees, at the drop off position which is some 13.7 meters from the base of the antenna. The RF density at this point is 0.0023 microwatts per square centimeter which is a negligible percent of the

maximum. As is the case for the WVPT- DT antenna, the field will get higher as the observer gets closer to the antenna itself. At a position half the distance from the antenna, 6.85 meters from the antenna base, using a relative field of 0.1, the antenna produces 0.11 microwatts per square centimeter which is 0.005 percent of the maximum.

Again, the focus of this antenna is in the same direction as the WVPT-DT antenna which the drop-off. This area has been posted with a warning sign for workers to stay outside of the area where the power density is at its highest. The area cannot be fenced off under instructions from the Forest Service which prohibit fencing at the site.

The FM station, WTON-FM, operates with an ERI type 3 antenna having an ERP of 0.34 kW from an antenna 11 meters above ground. This station has a calculated power density, at head height, of 8.4 microwatts per square centimeter, which is 0.84 percent of the maximum.

W31CE also transmits from the site with an ERP of 27 kW from an antenna 10 meters above the ground. This station produces 141.9 microwatts per square centimeter at head height, which is 7.4 percent of the maximum.

The licensee of W41DT transmits from this site using a power of 15 kW at 28 meters above ground. At head height this station produces 8.7 microwatts per square centimeter which is 0.411 percent of the maximum.

Charlottesville Site:

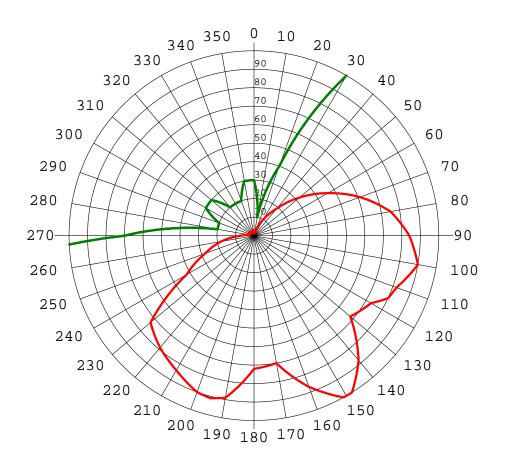
This site uses a Scala DRV-1. The manufacturer indicates the field at the nadir is .08 percent. Using the more conservative field of 0.2 percent as recommend in the OET 65 documents, this antenna which transmits with 0.1 kW of horizontally polarized power from an antenna height of 66 meters to head height, this antenna produces 0.031 microwatts per square centimeter. This amounts to 0.003 percent of the maximum of 1000 microwatts per square centimeter. Since this value is well below 1% no further analysis was deemed necessary.

Monterey Site:

This site uses the Scala CL-713 antenna. The manufacturer indicates the field at the nadir is .02 percent. Using the more conservative field of 0.2 percent as recommend in the OET-65 documents, this antenna which transmits with 0.008 kW of power from an antenna height of 41 meters to head height, this antenna produces 0.006 microwatts per square centimeter. This amounts to 0.0006 percent of the maximum of 1000 microwatts per square centimeter. There are no other sources of R.F. emissions at this site.

The sum of all emissions from the WVPT-TV main site falls well below the maximum threshold for a controlled area. The Charlottesville and Monterey sites are equally protective of the environment. Consequently, the applicant will fully comply with the FCC's maximum RF power density standards. The WVPT-TV main site area is posted with warning signs. As a total system, the applicant is confident it will

be in full compliance with the Commission's human exposure to radiofrequency electromagnetic fields rules.


The applicant has an agreement with the other stations at the WVPT-TV site to protect workers by either reducing R.F. emissions or terminating operations when workers are on the site or on towers where excessive exposure to electromagnetic radiation can be received.

N. Lat. = 380954.0 W. Lng. = 791851.0 HAAT and Distance to Contour, FCC OET, TV 3. 2 - 16.1, 130 pts - USGS 03 SEC

WVPT- Azi.	-D, Shena AV EL	andoah Va HAAT	alley Educa ERP kW	tiona, BF dBk	PEDT2008 Fi el d	1022ABK DAng	VFI d	D-kW	%Max	D-dBk	43-F9
Azi	AV EL	HAAT	ERP kW 0. 0090 0. 0010 0. 0160 0. 1000 0. 3610 1. 0240 2. 1160 3. 7210 5. 6250 7. 0560 8. 1000 6. 7240 5. 3290 4. 6240 7. 7440 10. 0000 7. 5690 4. 9000 5. 1840 7. 9210 8. 1000 7. 0560 6. 2410 5. 3290 1. 7640 0. 7840 0. 7840 0. 0490 0. 0040 0. 0040	dBk	Fi el d 0. 030 0. 010 0. 040 0. 100 0. 190 0. 320 0. 460 0. 610 0. 750 0. 840 0. 900 0. 820 0. 730 0. 680 1. 000 0. 720 0. 870 0. 720 0. 890 0. 730 0. 720 0. 840 0. 730 0. 720 0. 840 0. 720 0. 890 0. 730 0. 720 0. 890 0. 730 0. 720 0. 890 0. 730 0. 720 0. 900 0. 720 0. 900 0. 730 0. 720 0. 020 0. 030	DAng 0. 725 0. 687 0. 626 0. 633 0. 687 0. 746 0. 769 0. 775 0. 775 0. 764 0. 755 0. 744 0. 738 0. 743 0. 743 0. 743 0. 746 0. 750 0. 772 0. 773 0. 726 0. 772 0. 773 0. 726 0. 713 0. 725 0. 710 0. 718 0. 717 0. 716	VFI d 0. 999	0. 0090 0. 0010 0. 0160 0. 0997 0. 3601 1. 0219 2. 1121 3. 7146 5. 6149 7. 0431 8. 0854 6. 7113 5. 3186 4. 6146 7. 7278 9. 9795 7. 5533 4. 8895 5. 1735 7. 9052 8. 0853 7. 9052 8. 0853 7. 0432 6. 2273 5. 3146 1. 7600 0. 7823 0. 0489 0. 0040 0. 0090	99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.	20. 46 30. 00 17. 96 10. 00 -4. 42 0. 10 3. 26 5. 71 7. 50 8. 49 9. 08 8. 27 6. 65 8. 89 10. 00 8. 79 6. 90 7. 15 8. 99 9. 08 8. 49 7. 27 2. 46 -4. 89 13. 10 23. 98 23. 98 20. 46	45. 69 27. 20 42. 98 57. 50 71. 71 83. 72 90. 54 95. 76 98. 71 100. 41 101. 72 99. 62 97. 24 95. 65 99. 56 102. 03 99. 51 95. 46 96. 54 100. 34 101. 59 100. 46 97. 15 92. 69 86. 33 80. 21 72. 71 56. 96 39. 20 39. 16 45. 22
310 320 330 340 350	706. 6 736. 3 699. 3 697. 8 656. 8	626. 4 596. 7 633. 7 635. 2 676. 2	0. 0090 0. 0040 0. 0040 0. 0040 0. 0090	-20. 46 -23. 98 -23. 98 -23. 98 -20. 46	0. 030 0. 020 0. 020 0. 020 0. 030	0. 693 0. 677 0. 697 0. 698 0. 720	0. 999 0. 999 0. 999 0. 999 0. 999	0. 0090 0. 0040 0. 0040 0. 0040 0. 0090	99. 9 - 2 99. 9 - 2 99. 9 - 2 99. 9 - 2	23. 98 23. 98 23. 98	43. 78 36. 83 38. 07 38. 12 45. 45

Ave EI = 644.10 M HAAT= 688.90 M AMSL= 1333 M

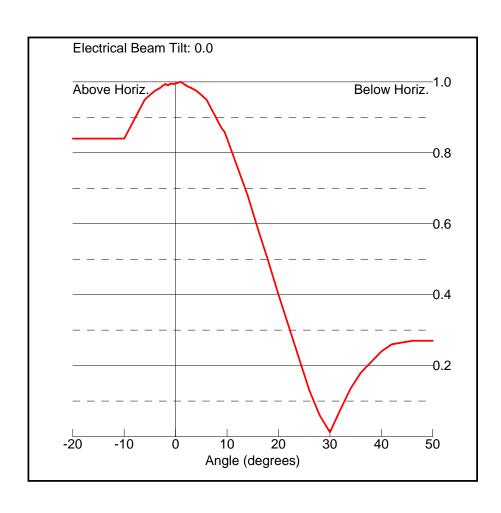
Horizontal Azimuth Pattern

Azi	Rel	dBk	kW	dВ
0	0.030	-20.46	0.009	-30.46
10	0.010	-30.00	0.001	-40.00
20	0.040	-17.96	0.016	-27.96
30	0.100	-10.00	0.100	-20.00
40	0.190	-4.42	0.361	-14.42
50	0.320	0.10	1.024	-9.90
60	0.460	3.26	2.116	-6.74
70	0.610	5.71	3.721	-4.29
80	0.750	7.50	5.625	-2.50
90	0.840	8.49	7.056	-1.51
100	0.900	9.08	8.100	-0.92
110	0.820	8.28	6.724	-1.72
120	0.730	7.27	5.329	-2.73
130	0.680	6.65	4.624	-3.35
140	0.880	8.89	7.744	-1.11
150	1.000	10.00	10.000	0.00
160	0.870	8.79	7.569	-1.21
170	0.700	6.90	4.900	-3.10

Azi	Rel	dBk	kW	dB
180	0.720	7.15	5.184	-2.85
190	0.890	8.99	7.921	-1.01
200	0.900	9.08	8.100	-0.92
210	0.840	8.49	7.056	-1.51
220	0.790	7.95	6.241	-2.05
230	0.730	7.27	5.329	-2.73
240	0.420	2.46	1.764	-7.54
250	0.280	-1.06	0.784	-11.06
260	0.180	-4.89	0.324	-14.89
270	0.070	-13.10	0.049	-23.10
280	0.020	-23.98	0.004	-33.98
290	0.020	-23.98	0.004	-33.98
300	0.030	-20.46	0.009	-30.46
310	0.030	-20.46	0.009	-30.46
320	0.020	-23.98	0.004	-33.98
330	0.020	-23.98	0.004	-33.98
340	0.020	-23.98	0.004	-33.98
350	0.030	-20.46	0.009	-30.46

Rotation Angle = 0

Page 1 12/15/11 Id: 10001


Additional Points

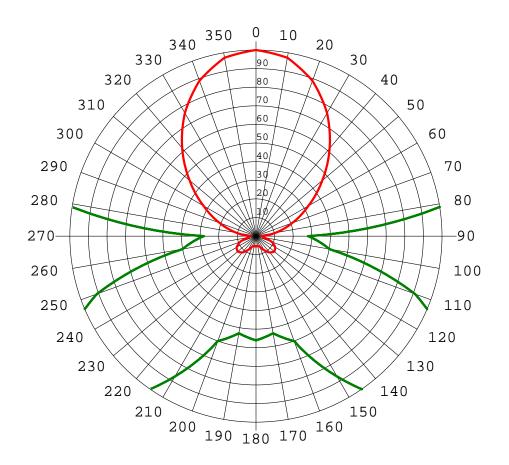
Azi	Rel	dBk	kW	dВ
15	0.800	8.06	6.400	-1.94
148	1.000	10.00	10.000	0.00
149	1.000	10.00	10.000	0.00
Minc	r Lobes	5.		
127	0.670	6.78	4.761	-3.22

Page 2 12/15/11 Id: 10001

Vertical Elevation Pattern

Angle (deg)	Relative Field
	0.84
-10.0	
-8.0	0.895
-6.0	0.95
-5.0	0.963
-4.5	0.969
-4.0	0.975
-3.5	0.979
-3.0	0.983
-2.5	0.989
-2.0	0.994
-1.5	0.99
-1.0	0.995
-0.5	0.994
0.0	0.995
0.5	0.998
1.0	1.0
1.5	0.995
2.0	0.99
2.5	0.986
3.0	0.983
3.5	0.979
4.0	0.975
4.5	0.969
5.0	0.963
5.5	0.956
6.0	0.95
6.5	0.936
7.0	0.922
7.5	0.909
8.0	0.895
8.5	0.881
9.0	0.868
9.5	0.859
10.0	0.84
12.0	0.76
14.0	0.68
16.0	0.585
18.0	0.495
20.0	0.4
22.0	0.31
24.0	0.22
26.0	0.13
28.0	0.06
30.0	0.012
32.0	0.075
34.0	0.135
36.0	0.18
38.0	0.21
55.5	J.2 1

40.00.2442.00.2646.00.27

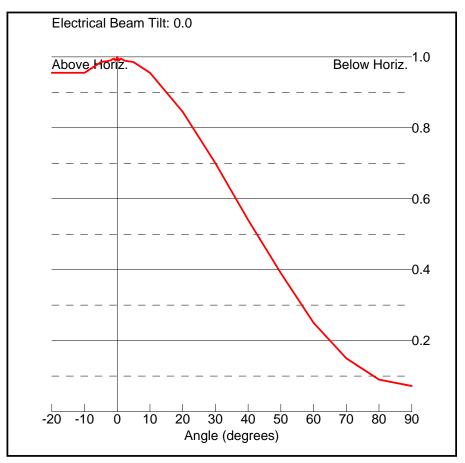

N. Lat. = 375900.0 W. Lng. = 782902.0 HAAT and Distance to Contour, FCC OET, TV 3. 2 - 16.1, 130 pts - USGS 03 SEC

Charlottseville Site - Scala DRV-1, No Rotation

Azi.	AV EL	HAAT	ERP kW	dBk	Fi el d	DAng	VFI d	D-kW	%Max D-dBk	36-F9
000	138. 1	356. 9	0. 1000	-10.00	1.000	0. 523	0. 989	0. 0979	98. 9 -10. 00	61. 33
010 020	130. 4 128. 9	364. 6 366. 1	0. 0947 0. 0789	-10. 24 -11. 03	0. 973 0. 888	0. 529 0. 530	0. 989 0. 989	0. 0927 0. 0772	98. 9 -10. 24 98. 9 -11. 03	61. 43 60. 16
030	135. 9	359. 1	0. 0584	-12.34	0. 764	0. 525	0. 989	0. 0571	98. 9 -12. 34	57. 46
040	202. 9	292. 1	0. 0379	-14. 21	0. 616	0.473	0. 990	0.0372	99.0 -14.21	50.30
050	262.8	232. 2	0. 0216	-16. 65	0. 465	0. 422	0. 991	0. 0212	99. 1 -16. 65	42.65
060	147.5	347.5	0. 0106	-19. 76	0.325	0. 516	0. 989	0. 0103	98. 9 -19. 76	44. 13
070 080	124. 1 121. 1	370. 9 373. 9	0. 0043 0. 0012	-23. 64 -29. 33	0. 208 0. 108	0. 533 0. 536	0. 989 0. 989	0. 0042 0. 0011	98. 9 -23. 64 98. 9 -29. 33	38. 56 28. 92
090	121.1	373. 9 378. 4	0. 0012	-29. 33 -41. 06	0. 108	0. 536	0. 989	0. 0011	98. 9 - 29. 33 98. 9 - 41. 06	20. 92 15. 94
100	114. 7	380. 3	0. 0001	-37. 96	0.040	0. 540	0. 989	0.0001	98. 9 - 37. 96	19. 06
110	105.6	389. 4	0. 0008	-30.82	0. 091	0. 547	0. 990	0.0008	99. 0 -30. 82	27. 52
120	127. 4	367. 6	0. 0014	-28. 42	0. 120	0. 531	0. 989	0. 0014	98. 9 -28. 42	29. 99
130	139. 9	355. 1	0. 0017	-27. 79	0. 129	0. 522	0. 989	0. 0016	98. 9 -27. 79	30. 41
140	147.8	347. 2	0.0013	-28. 79	0. 115	0. 516	0. 989	0.0013	98. 9 -28. 79	28. 60
150 160	149. 2 153. 2	345. 8 341. 8	0. 0008 0. 0004	-31. 21 -34. 44	0. 087 0. 060	0. 515 0. 512	0. 989 0. 989	0. 0007 0. 0004	98. 9 -31. 21 98. 9 -34. 44	25. 43 21. 66
170	150. 3	344. 7	0. 0004	-35. 51	0.053	0. 512	0. 989	0. 0004	98. 9 - 35. 51	20.62
180	144.6	350. 4	0. 0003	-35.04	0.056	0. 519	0. 989	0. 0003	98. 9 -35. 04	21. 31
190	149. 4	345.6	0.0003	-35. 51	0.053	0. 515	0. 989	0.0003	98. 9 -35. 51	20.65
200	157. 3	337. 7	0. 0004	-34.44	0.060	0. 509	0. 989	0.0004	98. 9 -34. 44	21. 52
210	173.6	321. 4	0. 0008	-31. 21	0. 087	0. 497	0. 989	0.0007	98. 9 -31. 21	24. 55
220 230	175. 8 164. 6	319. 2 330. 4	0. 0013 0. 0017	-28. 79 -27. 79	0. 115 0. 129	0. 495 0. 503	0. 989 0. 989	0. 0013 0. 0016	98. 9 -28. 79 98. 9 -27. 79	27. 50 29. 34
240	168. 1	326. 9	0.0017	-27. 79	0. 129	0. 503	0. 989	0. 0010	98. 9 -28. 42	28. 31
250	202. 2	292. 8	0. 0008	-30.82	0. 091	0. 474	0. 990	0.0008	99. 0 -30. 82	24. 04
260	213.0	282.0	0.0002	-37. 96	0.040	0.465	0. 990	0.0002	99.0 -37.96	16. 24
270	221. 1	273. 9	0. 0001	-41.06	0. 028	0. 458	0. 990	0. 0001	99.0 -41.06	13. 26
280	238. 0	257. 0	0. 0012	-29. 33	0. 108	0.444	0. 990	0. 0011	99.0 -29.33	24. 96
290 300	218. 9 199. 2	276. 1 295. 8	0. 0043 0. 0106	-23. 64 -19. 76	0. 208 0. 325	0. 460 0. 476	0. 990 0. 990	0. 0042 0. 0103	99. 0 -23. 64 99. 0 -19. 76	33. 71 41. 35
310	179. 2	295. 6 316. 4	0. 0106	-19. 76 -16. 65	0. 323	0. 478	0. 990	0. 0103	98. 9 -16. 65	41. 33
320	166. 3	328. 7	0. 0381	-14. 19	0. 617	0. 502	0. 989	0. 0372	98. 9 -14. 19	52. 43
330	165. 6	329. 4	0. 0584	-12.34	0. 764	0. 503	0. 989	0. 0571	98. 9 -12. 34	55. 54
340	159. 7	335. 3	0. 0789	-11. 03	0.888	0. 507	0. 989	0. 0771	98. 9 -11. 03	58.08
350	144. 4	350. 6	0. 0947	-10. 24	0. 973	0. 519	0. 989	0. 0926	98. 9 -10. 24	60. 48

Ave EI = 162.13 M HAAT= 332.87 M AMSL= 495 M

Charlottesville, DRV-1, Horizontal Azimuth Pattern

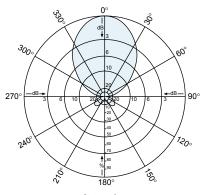


Azi	Rel	dBk	kW	dB	<u> </u>	Azi	Rel	dBk	kW	dB
0	1.000	-10.00	0.100	0.00	1	180	0.056	-35.04	0.000	-25.04
10	0.973	-10.24	0.095	-0.24	1	190	0.053	-35.51	0.000	-25.51
20	0.888	-11.03	0.079	-1.03	2	200	0.060	-34.44	0.000	-24.44
30	0.764	-12.34	0.058	-2.34	2	210	0.087	-31.21	0.001	-21.21
40	0.616	-14.21	0.038	-4.21	2	220	0.115	-28.79	0.001	-18.79
50	0.465	-16.65	0.022	-6.65	2	230	0.129	-27.79	0.002	-17.79
60	0.325	-19.76	0.011	-9.76	2	240	0.120	-28.42	0.001	-18.42
70	0.208	-23.64	0.004	-13.64	2	250	0.091	-30.82	0.001	-20.82
80	0.108	-29.33	0.001	-19.33	2	260	0.040	-37.96	0.000	-27.96
90	0.028	-41.06	0.000	-31.06	2	270	0.028	-41.06	0.000	-31.06
100	0.040	-37.96	0.000	-27.96	2	280	0.108	-29.33	0.001	-19.33
110	0.091	-30.82	0.001	-20.82	2	290	0.208	-23.64	0.004	-13.64
120	0.120	-28.42	0.001	-18.42	3	300	0.325	-19.76	0.011	-9.76
130	0.129	-27.79	0.002	-17.79	3	310	0.465	-16.65	0.022	-6.65
140	0.115	-28.79	0.001	-18.79	3	320	0.617	-14.19	0.038	-4.19
150	0.087	-31.21	0.001	-21.21	3	330	0.764	-12.34	0.058	-2.34
160	0.060	-34.44	0.000	-24.44	3	340	0.888	-11.03	0.079	-1.03
170	0.053	-35.51	0.000	-25.51	3	350	0.973	-10.24	0.095	-0.24

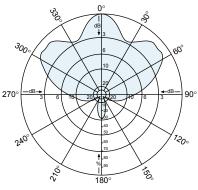
Rotation Angle = 0

Chrlottesville_Vertical Elevation Pattern

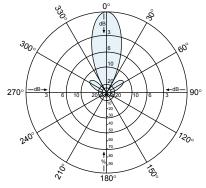
Angle (deg)	Relative Field
-10.0	0.955
-5.0	0.985
-4.5	0.986
-4.0	0.987
-3.5	0.987
-3.0	0.988
-2.5	0.989
-2.0	0.99
-1.5	0.993
-1.0	0.995
-0.5	0.989
0.0	1.0
0.5	0.989
1.0	0.995
1.5	0.993
2.0	0.99
2.5	0.989
3.0	0.988
3.5	0.987
4.0	0.987
4.5	0.986
5.0	0.985
5.5	0.982
6.0	0.979
6.5	0.976
7.0	0.973
7.5	0.97
8.0	0.967
8.5	0.964
9.0	0.961
9.5	0.958
10.0	0.955
20.0	0.845
30.0	0.7
40.0	0.54
50.0	0.39
60.0	0.25
70.0	0.15
80.0	0.09
90.0	0.072



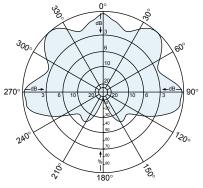
Kathrein Scala Division DRV panel antennas for VHF television transmission offer high performance, low VSWR, and application flexibility. Multi-panel arrays can be utilized to provide the standard patterns shown below and custom patterns for specific coverage requirements. Arrays include power dividers and coax feeders, plus installation hardware.


Like all Kathrein Scala Division antennas, the DRV is made of the finest materials using state of the art electrical and mechanical designs, resulting in superior performance and long service life.

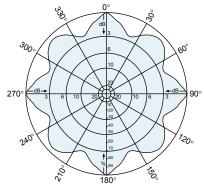
*The DRV covers channel 7 through 13 in system M as well as all other international band III channels.



/1 series Azimuth pattern (E-plane)

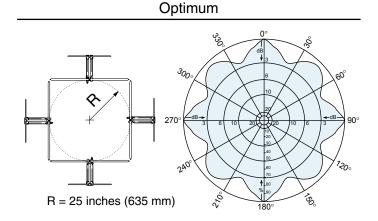


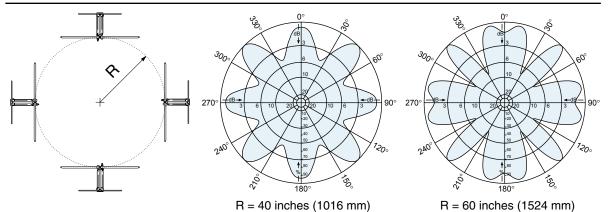
/2HW series Azimuth pattern (E-plane)



/2HN series
Azimuth pattern (E-plane)

/3HC series
Azimuth pattern (E-plane)


/4HO series
Azimuth pattern (E-plane)



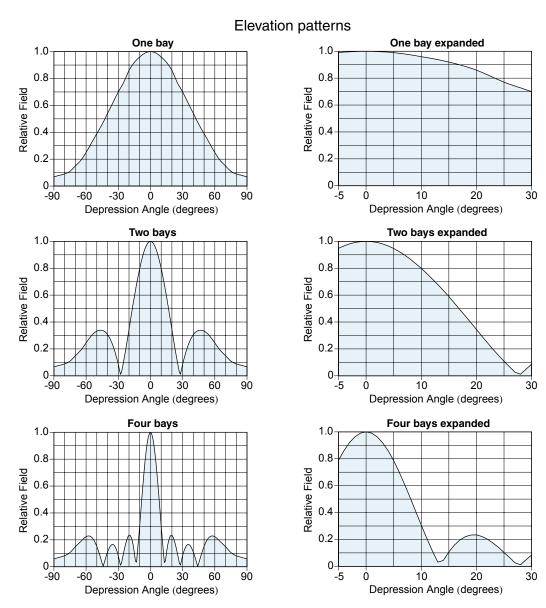
Panel antennas are designed so that their azimuth patterns achieve optimum smoothness when mounted as closely together as possible. Larger mounting radii produce undesirable scalloping.

Scalloped

Specifications:

-p	Gain	Power	Weight			Number	Number
Model	dBd	Gain	lb (kg)	Dimen	sions	of Panels	of Bays
DRV-1/1	7	5.01	18 (8.2)	48 x 48 x 18 inches	(1219 x 1219 x 457 mm)	1	1
DRV-2/1	10.4	10.96	36 (16.4)	110 x 48 x 18 inches	(2794 x 1219 x 457 mm)	2	2
DRV-4/1	13.4	21.88	72 (32.8)	237 x 48 x 18 inches	(6020 x 1219 x 457 mm)	4	4
DRV-1/2HN	10	10	36 (16.4)	48 x 100 x 18 inches	(1219 x 2540 x 457 mm)	2	1
DRV-2/2HN	13.4	21.88	72 (32.8)	110 x 100 x 18 inches	(2794 x 2540 x 457 mm)	4	2
DRV-4/2HN	16.4	43.65	144 (65.6)	237 x 100 x 18 inches	(6020 x 2540 x 457 mm)	8	4
DRV-1/2HW	4.5	2.82	36 (16.4)	48 x 70 x 70 inches	(1219 x 1778 x 1778 mm)	2	1
DRV-2/2HW	7.9	6.17	72 (32.8)	110 x 70 x 70 inches	(2794 x 1778 x 1778 mm)	4	2
DRV-4/2HW	10.9	12.3	144 (65.6)	237 x 70 x 70 inches	(6020 x 1778 x 1778 mm)	8	4
DRV-1/3HC	2.5	1.78	54 (24.6)	48 x 88 x 70 inches	(1219 x 2235 x 1778 mm)	3	1
DRV-2/3HC	5.9	3.89	108 (49.2)	110 x 88 x 70 inches	(2794 x 2235 x 1778 mm)	6	2
DRV-4/3HC	8.9	7.76	216 (98.4)	237 x 88 x 70 inches	(6020 x 2235 x 1778 mm)	12	4
DRV-1/4HO	1	1.26	72 (32.8)	48 x 88 x 88 inches	(1219 x 2235 x 2235 mm)	4	1
DRV-2/4HO	4.4	2.75	144 (65.6)	110 x 88 x 88 inches	(2794 x 2235 x 2235 mm)	8	2
DRV-4/4HO	7.4	5.5	288 (131)	237 x 88 x 88 inches	(6020 x 2235 x 2235 mm)	16	4

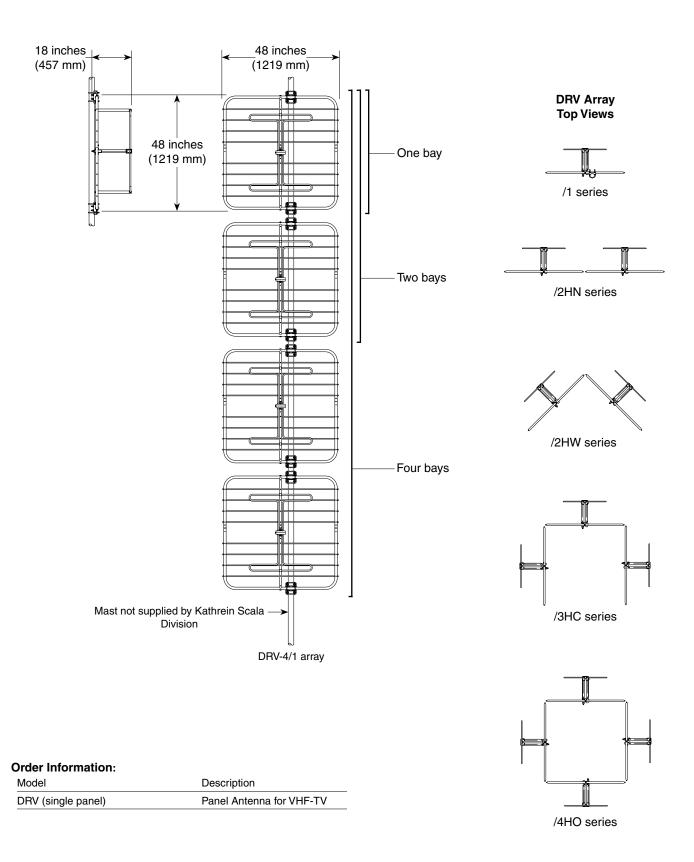
Contact Kathrein Scala Division Sales Engineering for information on special arrays with higher gain, asymmetrical patterns, electrical beamtilt, null fill, multichannel bandwidth, and other features to meet your specific requirements.



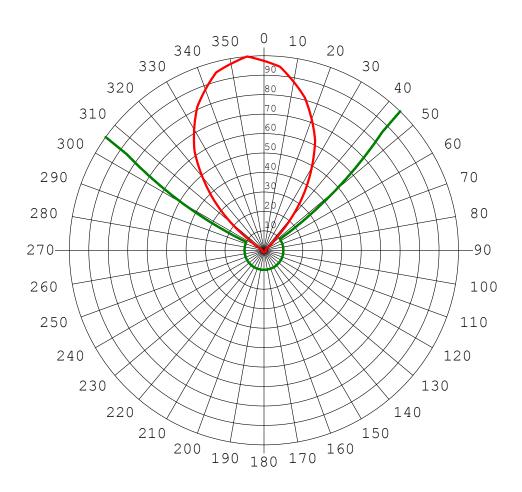
General Specifications:

Frequency	174-230 MHz (broadband)*
Impedance	50 ohms
VSWR	< 1.2:1
Polarization	Horizontal or vertical
Maximum input power	500 watts per panel (at 50° C)
Connector	N female
Wind load Front	at 100 mph (160 kph) 93 lbf (412 N)
Wind survival rating**	120 mph (200 kph)
Mounting	Hardware is included for attachment to 2.375 inch (60 mm) OD masts. Contact Kathrein Scala Division Sales Engineering for special mounting hardware and accessories.

^{*}The DRV covers channel 7 through 13 in system M as well as all other international band III channels.


^{**} Mechanical design is based on environmental conditions as stipulated in TIA-222-G-2 (December 2009) and/or ETS 300 019-1-4 which include the static mechanical load imposed on an antenna by wind at maximum velocity. See the Engineering Section of the catalog for further details.

All specifications are subject to change without notice. The latest specifications are available at www.kathrein-scala.com.


N. Lat. = 382039.0 W. Lng. = 793547.0 HAAT and Distance to Contour, FCC OET,TV 3.2 - 16.1, 130 pts - USGS 03 SEC

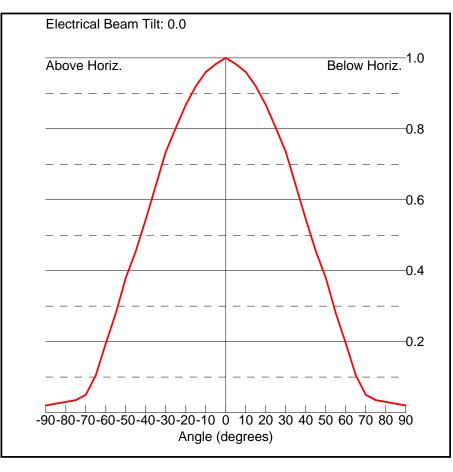
	ance to AV EL	Contour HAAT	and Depress ERP kW	ion Angle dBk	Field	DAng	VFld	D-kW	%Max D-dBk	36-F9
Azi 000 010 020 030 040 050 060 070 080 120 120 130 140 150 160 170 180 190 220 230 240	AV EL 936.0 946.5 912.4 981.2 1049.4 993.3 874.0 830.5 802.8 767.1 744.9 733.5 701.3 680.9 678.0 690.6 723.3 763.3 763.3 844.9 840.5 840.5 840.5 840.5 840.5	HAAT 402.0 391.5 425.6 356.8 288.6 344.7 464.0 507.5 535.2 570.9 593.1 604.5 636.7 657.1 660.0 647.4 614.7 574.7 493.1 497.5 579.8 464.9 490.1	ERP kw	dBk21.20 -22.09 -23.86 -27.15 -34.00 -47.34 -60.97 -60.97 -60.97 -60.97 -60.97 -60.97 -60.97 -60.97 -60.97 -60.97 -60.97 -60.97 -60.97 -60.97	Field 0.974 0.879 0.717 0.491 0.223 0.048 0.010	0.555 0.548 0.571 0.523 0.471 0.514 0.597 0.624 0.641 0.662 0.675 0.681 0.699 0.710 0.712 0.705 0.687 0.618 0.618 0.618 0.618	0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998	0.0076 0.0062 0.0041 0.0019 0.0000	99.8 -21.20 99.8 -22.09 99.8 -23.86 99.8 -27.15 99.8 -34.00 99.8 -60.97 99.8 -60.97	44.53 42.40 41.21 31.53 20.39 9.56 2.85 2.92 2.93 2.93 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94
250 260 270 280	827.4 895.4 959.2 980.0	510.6 442.6 378.8 358.0	0.0000 0.0000 0.0000 0.0000	-60.97 -60.97 -60.97	0.010 0.010 0.010 0.010	0.626 0.583 0.539 0.524	0.998 0.998 0.998 0.998	0.0000 0.0000 0.0000 0.0000	99.8 -60.97 99.8 -60.97 99.8 -60.97 99.8 -60.97	2.88 2.83 2.78 2.76
290 300 310 320 330 340 350	1039.5 1009.2 1001.9 1013.0 1017.7 1005.5 968.3	298.5 328.8 336.1 325.0 320.3 332.5 369.7	0.0000 0.0000 0.0004 0.0019 0.0041 0.0062 0.0076	-60.97 -47.34 -34.00 -27.15 -23.86 -22.09 -21.20	0.010 0.048 0.223 0.491 0.717 0.879 0.974	0.479 0.502 0.508 0.499 0.496 0.505 0.533	0.998 0.998 0.998 0.998 0.998 0.998	0.0000 0.0000 0.0004 0.0019 0.0041 0.0062 0.0076	99.8 -60.97 99.8 -47.34 99.8 -34.00 99.8 -27.15 99.8 -23.86 99.8 -22.09 99.8 -21.20	2.69 9.31 21.93 30.08 35.58 39.31 42.80

Additional Radials (Not Considered in Average):

355 963.2 374.8 0.0080 -20.97 1.000 0.536 0.998 0.0080 99.8 -20.97 43.47

Ave El= 867.73 M HAAT= 470.27 M AMSL= 1338 M

Azi	Rel	dBk	kW	dB
0	0.974	-21.20	0.008	-0.23
10	0.879	-22.08	0.006	-1.12
20	0.717	-23.86	0.004	-2.89
30	0.491	-27.14	0.002	-6.17
40	0.224	-33.98	0.000	-13.01
50	0.048	-47.34	0.000	-26.38
60	0.010	-60.97	0.000	-40.00
70	0.010	-60.97	0.000	-40.00
80	0.010	-60.97	0.000	-40.00
90	0.010	-60.97	0.000	-40.00
100	0.010	-60.97	0.000	-40.00
110	0.010	-60.97	0.000	-40.00
120	0.010	-60.97	0.000	-40.00
130	0.010	-60.97	0.000	-40.00
140	0.010	-60.97	0.000	-40.00
150	0.010	-60.97	0.000	-40.00
160	0.010	-60.97	0.000	-40.00
170	0.010	-60.97	0.000	-40.00


Azi	Rel	dBk	kW	dB
180	0.010	-60.97	0.000	-40.00
190	0.010	-60.97	0.000	-40.00
200	0.010	-60.97	0.000	-40.00
210	0.010	-60.97	0.000	-40.00
220	0.010	-60.97	0.000	-40.00
230	0.010	-60.97	0.000	-40.00
240	0.010	-60.97	0.000	-40.00
250	0.010	-60.97	0.000	-40.00
260	0.010	-60.97	0.000	-40.00
270	0.010	-60.97	0.000	-40.00
280	0.010	-60.97	0.000	-40.00
290	0.010	-60.97	0.000	-40.00
300	0.048	-47.34	0.000	-26.38
310	0.224	-33.98	0.000	-13.01
320	0.491	-27.14	0.002	-6.17
330	0.717	-23.86	0.004	-2.89
340	0.879	-22.08	0.006	-1.12
350	0 974	-21 20	0 008	-0 23

Rotation Angle = 0

Page 1 2/24/12 Id: 10001

Monterey Vertical Elevation Pattern

Angle (deg)	Relative Field
-90.0	0.02
-89.0	0.021
-88.0	0.022
-87.0	0.023
-86.0	0.024
-85.0	0.025
-84.0	0.026
-83.0	0.027
-82.0	0.028
-81.0	0.029
-80.0	0.03
-79.0	0.031
-78.0	0.032
-77.0	0.033
-76.0	0.034
-75.0	0.035
-74.0	0.038
-73.0	0.041
-72.0	0.044
-71.0	0.047
-70.0	0.05
-69.0	0.061
-68.0	0.072
-67.0	0.083
-66.0	0.094
-65.0	0.105
-64.0	0.123
-63.0	0.141
-62.0	0.159
-61.0	0.177
-60.0	0.195
-59.0	0.212
-58.0	0.229
-57.0	0.246
-56.0	0.263
-55.0	0.28
-54.0	0.3
-53.0	0.32
-52.0	0.34
-51.0	0.36
-50.0	0.38
-49.0	0.395
-48.0 47.0	0.41
-47.0 46.0	0.425
-46.0	0.44
-45.0	0.455
-44.0	0.473
-43.0	0.491

-42.0	0.509
-41.0	0.527
-40.0	0.545
-39.0	0.564
-38.0	0.583
-37.0	0.602
-36.0	0.621
-35.0	0.64
-34.0	0.659
-33.0	0.678
-32.0	0.697
-31.0	0.716
-30.0	0.735
-29.0	0.749
-28.0	0.762
-27.0	0.776
-26.0	0.789
-25.0	0.803
-24.0	0.816
-23.0	0.829
-22.0	0.842
-21.0	0.855

-20.0	0.868	32.0	0.697
-19.0	0.878	33.0	0.678
-18.0	0.889	34.0	0.659
-17.0	0.899	35.0	0.64
-16.0	0.91	36.0	0.621
-15.0	0.92	37.0	0.602
-14.0	0.928	38.0	0.583
-13.0	0.936	39.0	0.564
-12.0	0.944	40.0	0.545
-11.0	0.952	41.0	0.527
-10.0	0.96	42.0	0.509
-9.0	0.965	43.0	0.491
-8.0	0.969	44.0	0.473
-7.0	0.974	45.0	0.455
-6.0	0.978	46.0	0.44
-5.0	0.983	47.0	0.425
-4.0	0.986	48.0	0.41
-3.0	0.99	49.0	0.395
-2.0	0.993	50.0	0.38
-1.0	0.997	51.0	0.36
0.0	1.0	52.0	0.34
1.0	0.997	53.0	0.32
2.0	0.993	54.0	0.3
3.0	0.99	55.0	0.28
4.0	0.986	56.0	0.263
5.0	0.983	57.0	0.246
6.0	0.978	58.0	0.229
7.0	0.974	59.0	0.212
8.0	0.969	60.0	0.195
9.0	0.965	61.0	0.177
10.0	0.96	62.0	0.159
11.0	0.952	63.0	0.141
12.0	0.944	64.0	0.123
13.0	0.936	65.0	0.105
14.0	0.928	66.0	0.094
15.0	0.92	67.0	0.083
16.0	0.91	68.0	0.072
17.0	0.899	69.0	0.061
18.0	0.889	70.0	0.05
19.0	0.878	71.0	0.047
20.0	0.868	72.0	0.044
21.0	0.855	73.0	0.041
22.0	0.842	74.0	0.038
23.0	0.829	75.0	0.035
24.0	0.816	76.0	0.034
25.0	0.803	77.0	0.033
26.0	0.789	78.0	0.032
27.0	0.776	79.0	0.031
28.0	0.762	80.0	0.03
29.0	0.749	81.0	0.029
30.0	0.735	82.0	0.028
31.0	0.716	83.0	0.027
		30.0	
10010011			

VHF-TV Log-periodic Antenna 174 to 216 MHz (Channels 7–13)

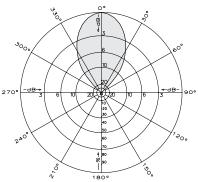
The Kathrein Scala Division CL-713 is a ruggedly built, horizontally polarized log-periodic antenna, designed for professional VHF-TV transmit and receive applications.

Like all Kathrein Scala Division antennas, the CL-713 is made of the finest materials using state of the art electrical and mechanical designs, resulting in superior performance and long service life.

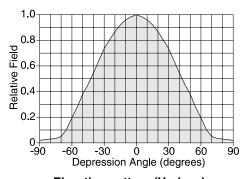
The CL-713 may be used stand alone or in arrays for higher gains, increased side-lobe suppression or custom azimuth patterns.

Specifications:

Frequency ra	inge	174-216 MHz (broadband)
Gain		9 dBd
Power gain		7.84
Impedance		50 or 75 ohms
VSWR		< 1.5:1
Polarization		Horizontal
Front-to-back	ratio	>25 dB
Maximum inp	out power	250 watts (higher power rating optional)
Azimuth patte	ern	50 degrees (half-power)
Elevation pat	tern	62 degrees (half-power)
Connector		N female (50 Ω or 75 Ω)
Wind load Front		at 100 mph (160 kph) 121 lbf (537 N) maximum
Wind surviva	I rating*	120 mph (200 kph)
Mounting		For masts of 2.375 inches (60 mm) OD.
	CL-713/HCM	Center-mount
	CL-713/HRM	Rear-mount
See reverse	for order informa	ation.


Specifications: CL-713/HCM

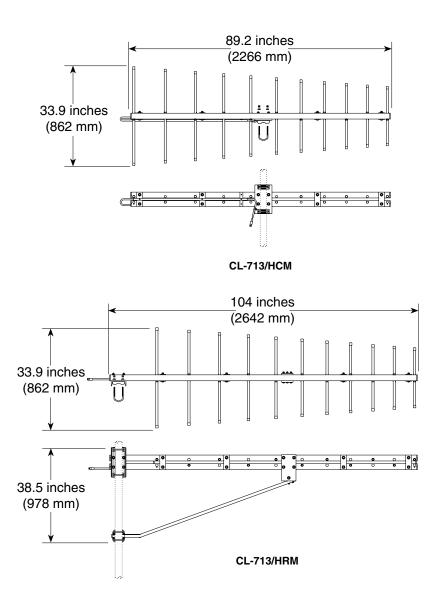
Weight	28.5 lb (12.9 kg)
Dimensions	89.2 x 33.9 x 9.9 inches (2266 x 862 x 252 mm)
Shipping dimensions	95 x 10 x 6 inches (2413 x 254 x 153 mm)
Shipping weight	42 lb (19.1 kg)


Specifications: CL-713/HRM

Weight	40 lb (18.2 kg)
Dimensions	104 x 38.5 x 33.9 inches (2642 x 978 x 862 mm)
Shipping dimensions	112 x 14 x 6 inches (2845 x 356 x 153 mm)
Shipping weight	79 lb (35.9 kg)

Azimuth pattern (E-plane)

Elevation pattern (H-plane)



^{*}Mechanical design is based on environmental conditions as stipulated in TIA-222-G-2 (December 2009) and/or ETS 300 019-1-4 which include the static mechanical load imposed on an antenna by wind at maximum velocity. See the Engineering Section of the catalog for further details.

VHF-TV Log-periodic Antenna 174 to 216 MHz (Channels 7–13)

Order Information:

Model	Description
CL-713/HCM/50N	Antenna with 50 Ω N connector
CL-713/HCM/75N	Antenna with 75 Ω N connector
CL-713/HRM/50N	Antenna with 50 Ω N connector
CL-713/HRM/75N	Antenna with 75 Ω N connector

-10	0.84
-8	0.895
-6	0.95
-5	0.963
-4.5	0.969
-4	0.975
-3.5	0.979
-3	0.983
-2.5	0.989
-2	0.994
-1.5	0.99
-1	0.995
-0.5	0.994
0	0.995
0.5	0.998
1	1
1.5	0.995
2	0.99
2.5	0.986
3	0.983
3.5	0.979
4	0.975
4.5	0.969
5	0.963
5.5	0.956
6	0.95
6.5	0.936
7	0.922
7.5	0.909
8	0.895
8.5	0.881
9	0.868
9.5	0.859
10	0.84
12	0.76
14	0.68
16	0.585
18	0.495
20	0.4
22	0.31
24	0.22
26	0.13
28	0.06
30	0.012
32	0.075
34	0.135
36	0.18
38	0.21
40	0.24

40

0.24

42 0.26

46 0.27

-10	0.955
-5	0.985
-4.5	0.986
-4	0.987
-3.5	0.987
-3	0.988
-2.5	0.989
-2	0.99
-1.5	0.993
-1	0.995
-0.5	0.989
0	1
0.5	0.989
1	0.995
1.5	0.993
2	0.99
2.5	0.989
3	0.988
3.5	0.987
4	0.987
4.5	0.986
5	0.985
5.5	0.982
6	0.979
6.5	0.976
7	0.973
7.5	0.97
8	0.967
8.5	0.964
9	0.961
9.5	0.958
10	0.955
20	0.845
30	0.7
40	0.54
50	0.39
60	0.25
70	0.15

80

90

0.09

0.072

-10	0.96
-9	0.965
-8	0.969
-7	0.974
-6	0.978
-5	0.983
-4.5	0.986
-4	0.986
-3.5	0.988
-3.3 -3	0.988
-2.5	0.991
-2	0.993
-1.5	0.995
-1	0.997
-0.05	0.998
0	1
0.5	0.998
1	0.997
1.5	0.995
2	0.993
2.5	0.991
3	0.99
3.5	0.988
4	0.986
4.5	0.985
5	0.983
5.5	0.98
6	0.978
6.5	0.973
7	0.974
7.5	0.971
7.5 8	0.969
8.5	0.967
9	0.965
9.5	0.962
10	0.96
11	0.952
12	0.944
13	0.936
14	0.928
15	0.92
16	0.909
17	0.899
18	0.888
19	0.878
20	0.868
21	0.855
22	0.842
22	0.030

23

0.829

- 24 0.816 25 0.802
- 26 0.789
- 27 0.775 28 0.762
- 29 0.749
- 30 0.735
- 31 0.716
- 32 0.697
- 33 0.678
- 34 0.659
- 35 0.64
- 36 0.621
- 37 0.602
- 38 0.583
- 39
- 0.564 40 0.545
- 41 0.527
- 42 0.509
- 43 0.491
- 44 0.473
- 45 0.455
- 46 0.44
- 47 0.425
- 48 0.41
- 49 0.395
- 50 0.38 51 0.36
- 52 0.34
- 53 0.32 0.3
- 54 55 0.28
- 56 0.263
- 57 0.246 58 0.229
- 59 0.212 60 0.195
- 61 0.177
- 62 0.159
- 63 0.141 64 0.123
- 65 0.105
- 66 0.094
- 67 0.083
- 68 0.072
- 69 0.061
- 70 0.05
- 71 0.047
- 72 0.044

73	0.041
74	0.038
75	0.035
76	0.034
77	0.033
78	0.032
79	0.031
80	0.03
81	0.029
82	0.028
83	0.027
84	0.026
85	0.025
86	0.024
87	0.023
88	0.022
89	0.021
90	0.02